4.探究问题:
(1)方法感悟:
如图1,在正方形ABCD中,点E、F分别为DC、BC边上的点,且满足∠EAF=45°,连接EF,求证:DE+BF=EF.
感悟解题方法,并完成下列填空:
将△ADE绕点A顺时针旋转90°得到△ABG,此时AD与AB重合,由旋转可得:
AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,点G、B、F在同一条直线上.
∵∠EAF=45°,
∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,∴∠1+∠3=45°.
即∠GAF=∠EAF.
又 AG=AE,AF=AF,∴△GAF≌△EAF.
∴GF=EF,故DE+BF=EF;
(2)方法迁移:
如图2,将Rt△ABC沿斜边翻折得到△ADC,点E、F分别为DC、BC边上的点,且∠EAF=$\frac{1}{2}$∠DAB.试猜想DE、BF、EF之间有何数量关系,并证明你的猜想;
(3)问题拓展:
如图3,在四边形ABCD中,AB=AD,E、F分别为DC、BC上的点,满足∠EAF=$\frac{1}{2}$∠DAB,试猜想当∠B与∠D满足什么关系时,可使得DE+BF=EF.请直接写出你的猜想(不必说明理由).
