相关习题
 0  283379  283387  283393  283397  283403  283405  283409  283415  283417  283423  283429  283433  283435  283439  283445  283447  283453  283457  283459  283463  283465  283469  283471  283473  283474  283475  283477  283478  283479  283481  283483  283487  283489  283493  283495  283499  283505  283507  283513  283517  283519  283523  283529  283535  283537  283543  283547  283549  283555  283559  283565  283573  366461 

科目: 来源: 题型:解答题

13.我们知道:“若ab=0,则a=0或b=0”,一元二次方程x2-x-2=0,可通过因式分解化为(x-2)(x+1)=0,那么x-2=0或x+1=0,即方程的解为x=2或x=-1.
(1)利用因式分解求方程x2+x-6=0的解;
(2)若(x2+y2)(x2+y2-1)-2=0,求x2+y2的值.

查看答案和解析>>

科目: 来源: 题型:解答题

12.数学问题:在1~51这51个自然数中,每次取两个不同的数,使得所取的两个数之和大于51,有多少中不同取法?
数学模型:为找到解决上面问题的方法,先建立简单的数学模型进行研究:
(1)在1~5这5个自然数中,每次取两个不同的数,使得所取的两个数之和大于5,有多少种不同取法?
解决问题过程如下:
  1 2 3 4 5
 1 (1,1) (1,2) (1,3) (1,4) (1,5)
 2 (2,1) (2,2) (2,3) (2,4) (2,5)
 3 (3,1) (3,2) (3,3) (3,4) (3,5)
 4 (4,1)  (4,2) (4,3) (4,4)(4,5)
 5 (5,1)  (5,2) (5,3) (5,4)(5,5)
第1行有1种取法(1,5)
第2行有2种取法(2,4),(2,5)
第3行有3种取法(3,3),(3,4),(3,5)
第4行有4种取法(4,2),(4,3),(4,4),(4,5)
第5行有5种取法(5,1),(5,2),(5,3),(5,4),(5,5)
共有1+2+3+4+5种取法,因为每次取两个不同的数,所以在这些取法中不包括(3,3),(4,4),(5,5),要从总数中减去这3中取法,并且(4,2)与(2,4),(4,3)与(3,4),(5,1)与(1,5),(5,2)与(2,5),…(5,4)与(4,5)是同一种取法,因此共有$\frac{1+2+3+4+5-\frac{5+1}{2}}{2}$=6种不同的取法.
(2)在1~6这6个自然数中,每次取两个不同的数,使得所取的两个数之和大于6,有多少种不同的取法?
解决问题过程如下:
  1 2 3 4 5 6
 1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
 2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
 3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
 4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
 5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
 6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
第1行有1种取法(1,6)
第2行有2种取法(2,5),(2,6)
第3行有3种取法(3,4),(3,5),(3,6)
第4行有4种取法(4,3),(4,4),(4,5),(4,6)
第5行有5种取法(5,2),(5,3),(5,4),(5,5),(5,6)
第6行有6种取法(6,1),(6,2),(6,3),6,4),(6,5),(6,6)
共有1+2+3+4+5+6种取法,因为每次取两个不同的数,所以在这些取法中不包括(4,4),(5,5),(6,6),要从总数中减去这3中取法,并且(4,3)与(3,4),(5,2)与(2,5),(5,3)与(3,5),(5,4)与(4,5),(6,1)与(1,6),(6,2)与(2,6)…(6,5)与(5,6)是同一种取法,因此共有$\frac{1+2+3+4+5+6-\frac{6}{2}}{2}$=9种不同的取法.
归纳探究:
仿照上述研究问题的思路和解决过程,回答下列提出的问题:
(1)在1~7这7个自然数中,每次取两个不同的数,使得所取的两个数之和大于7,共有12种不同取法.(只填结果)
(2)在1~8这8个自然数中,每次取两个不同的数,使得所取的两个数之和大于8,共有16种不同取法.(只填结果)
(3)在1~n(n为奇数)这n个自然数中,每次取两个不同的数,使得所取的两个数之和大于n,共有$\frac{{n}^{2}-1}{4}$种不同取法.(只填最简算式)
(4)在1~n(n为偶数)这n个自然数中,每次取两个不同的数,使得所取的两个数之和大于n,共有$\frac{{n}^{2}}{4}$种不同取法.(只填最简算式)
类比应用:类比上述研究方法或应用其结论,解决下列提出的问题:
(5)各边长都是整数,最大边长为51的三角形有多少个?(直接列出算术,并计算结果)

查看答案和解析>>

科目: 来源: 题型:解答题

11.如图,已知∠α和直角∠AOB,在∠AOB的内部以点O为顶点作∠β,使∠β=90°-∠α.(要求:尺规作图,不写作法,保留作图痕迹)

查看答案和解析>>

科目: 来源: 题型:解答题

10.按要求画图.
(1)过P点画直线L的垂线  (2)过点C画线段AB的垂线段

查看答案和解析>>

科目: 来源: 题型:解答题

9.己知,△ABC中,AB=AC=1,∠BAC=90°,P是BC延长线上的动点,∠PAC=α.
(1)请在图中,用尺规作图的方法在射纸CB上找一点Q,使得∠QAC=α,(保留作图痕迹,不必证明).并直接写出∠AQB的大小;
(2)在(1)的条件下,证明:AP2+AQ2=(BP-CQ)2

查看答案和解析>>

科目: 来源: 题型:选择题

8.下列各式中一定是二次根式的是(  )
A.$\sqrt{-7}$B.$\root{3}{2m}$C.$\sqrt{{x^2}+1}$D.$\root{3}{{\frac{a}{b}}}$

查看答案和解析>>

科目: 来源: 题型:选择题

7.如图,点A、B坐标分别为A(-2,0),B(0,1),点E是坐标平面内的任意一点,过点E作x轴的垂线交x轴于点C,交直线AB于点D,直线OE交直线AB于点F,连接CF,若△CEF是一个有一内角为120°的等腰三角形,则符合条件的点E的有(  )个.
A.3个B.4个C.5个D.6个

查看答案和解析>>

科目: 来源: 题型:解答题

6.解方程:2(x-2)2=(x-2)

查看答案和解析>>

科目: 来源: 题型:选择题

5.下列说法中错误的是(  )
A.4的算术平方根是2B.负数有立方根,并且是负数
C.8的立方根是±2D.-1的立方根是-1

查看答案和解析>>

科目: 来源: 题型:选择题

4.下列各式是二次根式的是(  )
A.$\sqrt{2}$B.$\sqrt{m}$C.$\sqrt{-16}$D.$\root{3}{27}$

查看答案和解析>>

同步练习册答案