相关习题
 0  283781  283789  283795  283799  283805  283807  283811  283817  283819  283825  283831  283835  283837  283841  283847  283849  283855  283859  283861  283865  283867  283871  283873  283875  283876  283877  283879  283880  283881  283883  283885  283889  283891  283895  283897  283901  283907  283909  283915  283919  283921  283925  283931  283937  283939  283945  283949  283951  283957  283961  283967  283975  366461 

科目: 来源: 题型:解答题

10.如图1,在平面直角坐标系中,抛物线y=-$\frac{1}{3}$x2+$\frac{2\sqrt{3}}{3}$x+3与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,抛物线的顶点为点E.
(1)判断△ABC的形状,并说明理由;
(2)经过B,C两点的直线交抛物线的对称轴于点D,点P为直线BC上方抛物线上的一动点,当△PCD的面积最大时,Q从点P出发,先沿适当的路径运动到抛物线的对称轴上点M处,再沿垂直于抛物线对称轴的方向运动到y轴上的点N处,最后沿适当的路径运动到点A处停止.当点Q的运动路径最短时,求点N的坐标及点Q经过的最短路径的长;
(3)如图2,平移抛物线,使抛物线的顶点E在射线AE上移动,点E平移后的对应点为点E′,点A的对应点为点A′,将△AOC绕点O顺时针旋转至△A1OC1的位置,点A,C的对应点分别为点A1,C1,且点A1恰好落在AC上,连接C1A′,C1E′,△A′C1E′是否能为等腰三角形?若能,请求出所有符合条件的点E′的坐标;若不能,请说明理由.

查看答案和解析>>

科目: 来源: 题型:选择题

9.从-3,-1,$\frac{1}{2}$,1,3这五个数中,随机抽取一个数,记为a,若数a使关于x的不等式组$\left\{\begin{array}{l}{\frac{1}{3}(2x+7)≥3}\\{x-a<0}\end{array}\right.$无解,且使关于x的分式方程$\frac{x}{x-3}$-$\frac{a-2}{3-x}$=-1有整数解,那么这5个数中所有满足条件的a的值之和是(  )
A.-3B.-2C.-$\frac{3}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d=$\frac{|k{x}_{0}-{y}_{0}+b|}{\sqrt{1+{k}^{2}}}$计算.
例如:求点P(-1,2)到直线y=3x+7的距离.
解:因为直线y=3x+7,其中k=3,b=7.
所以点P(-1,2)到直线y=3x+7的距离为:d=$\frac{|k{x}_{0}-{y}_{0}+b|}{\sqrt{1+{k}^{2}}}$=$\frac{|3×(-1)-2+7|}{\sqrt{1+{3}^{2}}}$=$\frac{2}{\sqrt{10}}$=$\frac{\sqrt{10}}{5}$.
根据以上材料,解答下列问题:
(1)求点P(1,-1)到直线y=x-1的距离;
(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y=$\sqrt{3}$x+9的位置关系并说明理由;
(3)已知直线y=-2x+4与y=-2x-6平行,求这两条直线之间的距离.

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知△ABC是等腰直角三角形,∠BAC=90°,CD=$\frac{1}{2}$BC,DE⊥CE,DE=CE,连接AE,点M是AE的中点.
(1)如图1,若点D在BC边上,连接CM,当AB=4时,求CM的长;
(2)如图2,若点D在△ABC的内部,连接BD,点N是BD中点,连接MN,NE,求证:MN⊥AE;
(3)如图3,将图2中的△CDE绕点C逆时针旋转,使∠BCD=30°,连接BD,点N是BD中点,连接MN,探索$\frac{MN}{AC}$的值并直接写出结果.

查看答案和解析>>

科目: 来源: 题型:解答题

6.近期猪肉价格不断走高,引起了民众与政府的高度关注.当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.
(1)从今年年初至5月20日,猪肉价格不断走高,5月20日比年初价格上涨了60%.某市民在今年5月20日购买2.5千克猪肉至少要花100元钱,那么今年年初猪肉的最低价格为每千克多少元?
(2)5月20日,猪肉价格为每千克40元.5月21日,某市决定投入储备猪肉并规定其销售价在每千克40元的基础上下调a%出售.某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为每千克40元的情况下,该天的两种猪肉总销量比5月20日增加了a%,且储备猪肉的销量占总销量的$\frac{3}{4}$,两种猪肉销售的总金额比5月20日提高了$\frac{1}{10}$a%,求a的值.

查看答案和解析>>

科目: 来源: 题型:填空题

5.如图,在正方形ABCD中,AB=6,点E在边CD上,DE=$\frac{1}{3}$DC,连接AE,将△ADE沿AE翻折,点D落在点F处,点O是对角线BD的中点,连接OF并延长OF交CD于点G,连接BF,BG,则△BFG的周长是$\frac{12}{5}$($\sqrt{5}$+$\sqrt{10}$).

查看答案和解析>>

科目: 来源: 题型:选择题

4.已知a=(-$\frac{1}{2.78}$)67,b=(-$\frac{1}{2.78}$)68,c=(-$\frac{1}{2.78}$)69,判断a、b、c三数的大小关系为下列何者?(  )
A.a>b>cB.b>a>cC.b>c>aD.c>b>a

查看答案和解析>>

科目: 来源: 题型:选择题

3.计算(2x2-4)(2x-1-$\frac{3}{2}$x)的结果,与下列哪一个式子相同?(  )
A.-x2+2B.x3+4C.x3-4x+4D.x3-2x2-2x+4

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图,⊙O是△ABC的外接圆,AE平分∠BAC交⊙O于点E,交BC于点D,过点E做直线l∥BC.
(1)判断直线l与⊙O的位置关系,并说明理由;
(2)若∠ABC的平分线BF交AD于点F,求证:BE=EF;
(3)在(2)的条件下,若DE=4,DF=3,求AF的长.

查看答案和解析>>

科目: 来源: 题型:解答题

1.2016年3月27日“丽水半程马拉松竞赛”在莲都举行,某运动员从起点万地广场西门出发,途经紫金大桥,沿比赛路线跑回终点万地广场西门.设该运动员离开起点的路程S(千米)与跑步时间t(分钟)之间的函数关系如图所示,其中从起点到紫金大桥的平均速度是0.3千米/分,用时35分钟,根据图象提供的信息,解答下列问题:
(1)求图中a的值;
(2)组委会在距离起点2.1千米处设立一个拍摄点C,该运动员从第一次经过C点到第二次经过C点所用的时间为68分钟.
①求AB所在直线的函数解析式;
②该运动员跑完赛程用时多少分钟?

查看答案和解析>>

同步练习册答案