相关习题
 0  283860  283868  283874  283878  283884  283886  283890  283896  283898  283904  283910  283914  283916  283920  283926  283928  283934  283938  283940  283944  283946  283950  283952  283954  283955  283956  283958  283959  283960  283962  283964  283968  283970  283974  283976  283980  283986  283988  283994  283998  284000  284004  284010  284016  284018  284024  284028  284030  284036  284040  284046  284054  366461 

科目: 来源: 题型:解答题

5.如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF.连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.
(1)请判断:FG与CE的数量关系是FG=CE,位置关系是FG∥CE;
(2)如图2,若点E,F分别是边CB,BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;
(3)如图3,若点E,F分别是边BC,AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.

查看答案和解析>>

科目: 来源: 题型:选择题

4.如图,直线y=-x+5与双曲线y=$\frac{k}{x}$(x>0)相交于A,B两点,与x轴相交于C点,△BOC的面积是$\frac{5}{2}$.若将直线y=-x+5向下平移1个单位,则所得直线与双曲线y=$\frac{k}{x}$(x>0)的交点有(  )
A.0个B.1个C.2个D.0个,或1个,或2个

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知正方形ABCD的边长为1,点P为正方形内一动点,若点M在AB上,且满足△PBC∽△PAM,延长BP交AD于点N,连结CM.

(1)如图一,若点M在线段AB上,求证:AP⊥BN;AM=AN;
(2)①如图二,在点P运动过程中,满足△PBC∽△PAM的点M在AB的延长线上时,AP⊥BN和AM=AN是否成立?(不需说明理由)
②是否存在满足条件的点P,使得PC=$\frac{1}{2}$?请说明理由.

查看答案和解析>>

科目: 来源: 题型:填空题

2.已知抛物线y=ax2+bx+c开口向上且经过点(1,1),双曲线y=$\frac{1}{2x}$经过点(a,bc),给出下列结论:①bc>0;②b+c>0;③b,c是关于x的一元二次方程x2+(a-1)x+$\frac{1}{2a}$=0的两个实数根;④a-b-c≥3.其中正确结论是①③④(填写序号)

查看答案和解析>>

科目: 来源: 题型:选择题

1.如图,在Rt△ABC中,∠A=30°,BC=1,点D,E分别是直角边BC,AC的中点,则DE的长为(  )
A.1B.2C.$\sqrt{3}$D.1+$\sqrt{3}$

查看答案和解析>>

科目: 来源: 题型:解答题

20.为落实省新课改精神,我市各校都开设了“知识拓展类”、“体艺特长类”、“实践活动类”三类拓展性课程,某校为了解在周二第六节开设的“体艺特长类”中各门课程学生的参与情况,随机调查了部分学生作为样本进行统计,绘制了如图所示的统计图(部分信息未给出)

根据图中信息,解答下列问题:
(1)求被调查学生的总人数;
(2)若该校有200名学生参加了“体艺特长类”中的各门课程,请估计参加棋类的学生人数;
(3)根据调查结果,请你给学校提一条合理化建议.

查看答案和解析>>

科目: 来源: 题型:选择题

19.13世纪数学家斐波那契的《计算书》中有这样一个问题:“在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为(  )
A.42B.49C.76D.77

查看答案和解析>>

科目: 来源: 题型:填空题

18.实数a,n,m,b满足a<n<m<b,这四个数在数轴上对应的点分别为A,N,M,B(如图),若AM2=BM•AB,BN2=AN•AB,则称m为a,b的“大黄金数”,n为a,b的“小黄金数”,当b-a=2时,a,b的大黄金数与小黄金数之差m-n=2$\sqrt{5}$-4.

查看答案和解析>>

科目: 来源: 题型:填空题

17.已知|a+2|=0,则a=-2.

查看答案和解析>>

科目: 来源: 题型:选择题

16.如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则$\widehat{BC}$的长为(  )
A.$\frac{10}{3}$πB.$\frac{10}{9}$πC.$\frac{5}{9}$πD.$\frac{5}{18}$π

查看答案和解析>>

同步练习册答案