相关习题
 0  284569  284577  284583  284587  284593  284595  284599  284605  284607  284613  284619  284623  284625  284629  284635  284637  284643  284647  284649  284653  284655  284659  284661  284663  284664  284665  284667  284668  284669  284671  284673  284677  284679  284683  284685  284689  284695  284697  284703  284707  284709  284713  284719  284725  284727  284733  284737  284739  284745  284749  284755  284763  366461 

科目: 来源: 题型:解答题

18.计算:-2-3-$\sqrt{{{(-2)}^2}}+4cos45°-\sqrt{8}$.

查看答案和解析>>

科目: 来源: 题型:选择题

17.不等式组$\left\{\begin{array}{l}x+1<3\\-\frac{1}{2}x≤1\end{array}\right.$的解集在数轴上表示正确的是(  )
A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:解答题

16.计算:
(1)$\frac{3}{2}$$\sqrt{20}$×(-$\frac{1}{3}$$\sqrt{48}$)÷$\sqrt{2\frac{2}{3}}$;      
(2)$\sqrt{3}$-3$\sqrt{\frac{1}{3}}$-$\sqrt{8}$+$\frac{1}{2}\sqrt{12}$+$\frac{1}{5}$$\sqrt{50}$;
(3)(2$\sqrt{3}$-1)(2$\sqrt{3}$+1)-(1-2$\sqrt{3}$)2;   
(4)$\sqrt{8}$+|$\sqrt{2}$-1|-π0+($\frac{1}{2}$)-1

查看答案和解析>>

科目: 来源: 题型:选择题

15.下列各式中,最简二次根式是(  )
A.$\sqrt{0.3}$B.$\sqrt{12}$C.$\sqrt{6{x}^{3}}$D.$\sqrt{{x}^{2}+1}$

查看答案和解析>>

科目: 来源: 题型:解答题

14.计算:($\sqrt{5}$+1)0+(-1)2016+$\sqrt{2}$sin45°-($\frac{1}{3}$)-1

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知抛物线y=ax2+bx+c(其中a、b、c都不为0),设它的顶点为P,与y轴的交点是Q.我们把以Q为顶点且过点P的抛物线为原抛物线的伴随抛物线.
(1)①抛物线y=x2-2x+1的伴随抛物线的解析式是y=-x2+1;
②抛物线y=-x2+3x-2的伴随抛物线的解析式是y=x2-2;
③抛物线y=2x2-8x+4的伴随抛物线的解析式是y=-2x2+4.
(2)抛物线y=ax2+bx+c的伴随抛物线的解析式是-ax2+c.
(3)设抛物线y=2x2-8x+4的顶点为P,与x轴的两个交点分别为A,B(A在B的左边);它的伴随抛物线的顶点为Q,与x轴的两个交点分别为C,D(C在D的左边).
①问:以P,B,Q,C为顶点的四边形是平行四边形吗?说明理由.
②设点P的横坐标记为xP,点Q的横坐标记为xQ,若在x轴上有一动点M(x,0),且xQ<x<xP,过M作一条垂直于x轴的直线,与两条抛物线分别交于E,F两点,试问是否存在EF=2的情形?若存在,请求出x的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

12.$\frac{1}{2}$cos30°+sin245°cos60°-$\sqrt{(1-tan60°)^{2}}$-tan45°.

查看答案和解析>>

科目: 来源: 题型:填空题

11.下面是我们将在高中阶段所要学习的一个内容,请先阅读这段内容.再解答问题,三角函数中常用公式sin(α+β)=sinαcosβ+cosαsinβ,.求sin75°的值,即sin75°=sin(30°+45°)=sin30°os45°+cos30°sin45°=$\frac{\sqrt{2}+\sqrt{6}}{4}$.试用公式cos(α+β)=cosαsinβ-sinαcosβ,求出cos75°的值是$\frac{\sqrt{6}}{4}$-$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目: 来源: 题型:解答题

10.(列方程(组)及不等式解应用题)
春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.
(1)求甲、乙两种商品每件的进价分别是多少元?
(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.

查看答案和解析>>

科目: 来源: 题型:解答题

9.计算
(1)2sin45°-${(π-\sqrt{5)}}^{0}$+${(\frac{1}{2})}^{-1}$+|$\sqrt{2}-1$|
(2)(2a+3b)(3a-2b)

查看答案和解析>>

同步练习册答案