相关习题
 0  284581  284589  284595  284599  284605  284607  284611  284617  284619  284625  284631  284635  284637  284641  284647  284649  284655  284659  284661  284665  284667  284671  284673  284675  284676  284677  284679  284680  284681  284683  284685  284689  284691  284695  284697  284701  284707  284709  284715  284719  284721  284725  284731  284737  284739  284745  284749  284751  284757  284761  284767  284775  366461 

科目: 来源: 题型:解答题

8.如图,平面直角坐标系中,△ABC为等边三角形,其中点A,B,C的坐标分别为(3,1),(3,3),(3-$\sqrt{3}$,2),现以原点为对称中心作△ABC的中心对称图形,得△A1B1C1,再以y轴为对称轴作△A1B1C1的对称图形,得△A2B2C2
(1)直接写出C1,C2的坐标;
(2)能否通过一次旋转,将△ABC旋转到△A1B1C1的位置?你若认为能,请作出肯定的回答,并直接写出所旋转的角度;你若认为不能,请作出否定的回答(不必说明理由);
(3)设当△ABC的位置发生变化时,△A2B2C2,△A1B1C1与△ABC之间的对称关系始终保持不变,当△ABC向下平移多少个单位时,△ABC与△A2B2C2完全重合?并直接写出此时点C的坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

7.如图①,△ABC是等边三角形,AB=AE,连接CE交AB于点H,
(1)求证:∠BAE=2∠BCE;
(2)如图②,延长线AE,CB交于点F,点D在CB上,连接AD交CE于点G,当FA=FD时,求证:AH=BD;
(3)如图③,在(2)的条件下,把△ACD沿AD翻折,得到△AKD,K与C对应,AK交CE于点T,若CG=6,TG=4,求线段DG的长.

查看答案和解析>>

科目: 来源: 题型:解答题

6.等腰△ABC中,AB=AC,AD⊥BC于点D,点E落在了AD上,连接CE,将线段EC绕点E顺时针旋转一定的角度,使得点C落在了点F处,且满足∠CEF=∠CAB,连接BF.

(1)若∠BAC=60°(如图1),则线段AE与BF的数量关系为AE=BF;
(2)若∠BAC=90°(如图2),求证:BF=$\sqrt{2}$AE;(写出证明过程)
(3)在(2)的条件下(备用图),连接FD并延长分别交CE、CA于点M、N,BC=8,$FD=\sqrt{10}DE$,求△CMN的面积.

查看答案和解析>>

科目: 来源: 题型:解答题

5.刘卫同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,∠B=90°,∠A=30°,BC=6cm;图②中,∠D=90°,∠E=45°,DE=4cm.图③是刘卫同学所做的一个实验:他将△DEF的直角边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合).

(1)在△DEF沿AC方向移动的过程中,刘卫同学发现:F、C两点间的距离逐渐变小.
(填“不变”、“变大”或“变小”)
(2)刘卫同学经过进一步地研究,编制了如下问题:
问题①:当△DEF移动至什么位置,即AD的长为多少时,F、C的连线与AB平行?
问题②:当△DEF移动至什么位置,即AD的长为多少时,以线段AD、FC、BC的长度为三边长的三角形是直角三角形?
问题③:在△DEF的移动过程中,S△ADB+S△CEB的值是否为一定值?如果是,求出此定值;如果不存在,请说明理由.
请你分别完成上述三个问题的解答过程.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知如图,在△ABC中,AB=AC,tan∠B=$\frac{1}{2}$,作∠DAF=$\frac{1}{2}$∠BAC,AD交BC于点D,AF交BC于点F,将点D沿直线AF翻折得到对称点E,连接CE、DE.
(1)求证:BD=CE;
(2)如图2,过点E作AC的垂线交AC于N,交直线AF于M,若∠AME=45°,AD=5$\sqrt{2}$时,求线段FG的长.

查看答案和解析>>

科目: 来源: 题型:填空题

3.设x1、x2是方程x2-7x+3=0的两根,则$\frac{{x}_{1}{x}_{2}}{{x}_{1}+{x}_{2}}$=$\frac{3}{7}$.

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图1所示,已知矩形ABCD中,AB=6cm,对角线AC=10cm,将矩形ABCD沿AC方向平移a cm得到矩形A′B′C′D′,A′B′交BC于M,A′D交CD于点N.

(1)求$\frac{{A}^{′}M}{{A}^{′}N}$;  
(2)如图2,把图1中的矩形A′B′C′D′绕A点顺时针转某一角度,其他条件不变,证明(1)是否成立,请说明理由;
(3)如图3所示,在(2)的条件下,当矩形A′B′C′D′旋转A′D′过点D时,△A′MC为等腰三角形,求a的值.

查看答案和解析>>

科目: 来源: 题型:填空题

1.如图,P、Q是Rt△ABC斜边AB上的点,AQ=AC,BP=CB,△ABC内切圆半径为5,则△CPQ外接圆半径为5$\sqrt{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

10.如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于$\frac{1}{2}BF$长为半径画弧,两弧交于一点P,连
接AP并延长交BC于点E,连接EF. 
(1)四边形ABEF是菱形;(选填矩形、菱形、正方形、无法确定)(直接填写结果)
(2)AE,BF相交于点O,若四边形ABEF的周长为40,BF=10,则AE的长为10$\sqrt{3}$,∠ABC=120°.(直接填写结果)

查看答案和解析>>

科目: 来源: 题型:填空题

9.如图,抛物线y=-x2+2x+3与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为(1+$\sqrt{2}$,2)或(1-$\sqrt{2}$,2).

查看答案和解析>>

同步练习册答案