相关习题
 0  284718  284726  284732  284736  284742  284744  284748  284754  284756  284762  284768  284772  284774  284778  284784  284786  284792  284796  284798  284802  284804  284808  284810  284812  284813  284814  284816  284817  284818  284820  284822  284826  284828  284832  284834  284838  284844  284846  284852  284856  284858  284862  284868  284874  284876  284882  284886  284888  284894  284898  284904  284912  366461 

科目: 来源: 题型:解答题

14.据报道,2015年我国每千名儿童所拥有的儿科医生数为0.43(将0~14岁的人群定义为儿童),远低于世界主要发达国家,儿科医生存在较大缺口.根据2000-2015年报道的相关数据,绘制统计图表如下:
全国人口、儿童人口、儿科医生及每千名儿童拥有的儿科医生数统计表
年份全国人口
(亿人)
儿童人口
(亿人)
儿科医生
(万人)
每千名儿童拥有的儿科医生数
200012.672.99.570.33
200513.062.6510.070.38
201013.42.2210.430.47
201513.72.269.720.43

根据以上信息解答下列问题:
(1)直接写出扇形统计图中m的值;
(2)根据统计表估计2020年我国人口数约为14亿人;
(3)若2020年我国儿童占总人口的百分比与2015年相同,请你估算到2020年我国儿科医生需比2015年增加多少万人,才能使每千名儿童拥有的儿科医生数达到0.6.

查看答案和解析>>

科目: 来源: 题型:解答题

13.如图,已知AB是⊙O的直径,弦ED⊥AB于点F,点C是劣弧AD上的动点(不与点A、D重合),连接BC交ED于点G.过点C作⊙O的切线与ED的延长线交于点P.
(1)求证:PC=PG;
(2)当点G是BC的中点时,求证:CG2=BF•OB;
(3)已知⊙O的半径为5,在满足(2)的条件时,点O到BC的距离为$\sqrt{5}$,求此时△CGP的面积.

查看答案和解析>>

科目: 来源: 题型:解答题

12.某校学生会为了解该校学生喜欢球类活动的情况,采取抽样调查的办法,从足球、乒乓球、篮球、排球等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制成右边的两幅不完整的统计图(如图1,图2,要求每位同学只能选择一种自己喜欢的球类;图中用乒乓球、足球、排球、篮球代表喜欢这四种球类中的某一种球类的学生人数),请你根据图中提供的信息,解答下列问题:
(1)在这次研究中,一共调查了多少名学生?
(2)喜欢排球的人数在扇形统计图中所占的圆心角是多少度?
(3)补全频数分布折线统计图.

查看答案和解析>>

科目: 来源: 题型:解答题

11.(1)如图1,AC=DC,BC=EC,∠ACD=∠BCE,求证:∠A=∠D.
(2)如图2,在⊙O的内接四边形ABCD中,AB是直径,∠BCD=120°,过D点的切线PD与直线AB交于点P,求∠ADP的度数.

查看答案和解析>>

科目: 来源: 题型:解答题

10.小红和小明在操场做游戏,规则是:每人蒙上眼睛在一定距离外向设计好的图形内掷小石子,若掷中阴影部分则小红胜,否则小明胜,未掷入图形内则重掷一次.
(1)若第一次设计的图形(图1)是半径分别为20cm和30cm的同心圆.求游戏中小红获胜的概率.你认为游戏对双方公平吗?请说明理由.
(2)若第二次设计的图形(图2)是两个矩形,其中大矩形的长为80cm、宽为60cm,且小矩形到矩形的边宽相等.要使游戏对双方公平,则边宽x应为多少cm?
(3)依据以上做法,你能否在一个任意正方形内部设计一个小正方形阴影部分使游戏对双方公平?若能,请你画出示意图,并写上必要说明.

查看答案和解析>>

科目: 来源: 题型:填空题

9.若平面直角坐标系中,两点关于过原点的一条直线对称,则这两点就是互为镜面点,这条直线叫镜面直线,如A(2,3)和B(3,2)是以y=x为镜面直线的镜面点.
(1)M(4,1)和N(-1,-4)是一对镜面点,则镜面直线为y=-x;
(2)以y=$\sqrt{3}$x为镜面直线,E(-2,0)的镜面点为(1,-$\sqrt{3}$).

查看答案和解析>>

科目: 来源: 题型:解答题

8.阅读下列材料:
    2015年秋冬之际,北京持续多天的雾霾让环保成为人们关注的焦点,为了身心健康,人们纷纷来京郊旅游.门头沟地处北京西南部,山青水秀,风景如画,静谧清幽.爨底下、潭柘寺、珍珠湖、百花山、灵山、妙峰山、龙门涧等众多景点受到广大旅游爱好者的青睐.
    据统计,2015年门头沟游客接待总量为22.1万人次.其中潭柘寺的玉兰花和戒台寺的祈福受到了游客的热捧,两地游客接待量分别达3.8万人次、2.175万人次;爨底下和百花山因其文化底蕴深厚和满园春色也成为游客的重要目的地,游客接待量分别为2.6万人次和1.76万人次;妙峰山樱桃园的游客密集度较高,达1.8万人次.
    2014年门头沟游客接待总量约为20万人次.其中,潭柘寺游客接待量比2013年增加了25%;百花山游客接待量为2.62万人次,比2013年增加了0.4万人次;妙峰山樱桃园的大樱桃采摘更是受到广大游客的喜爱,接待量为2.2万人次.
    2013年,潭柘寺、双龙峡、妙峰山樱桃园游客接待量分别为3.2万人次、1.3万人次和1.49万人次.
根据以上材料回答下列问题:
(1)2014年,潭柘寺的游客接待量为4万人次;
(2)选择统计表或统计图,将2013-2015年潭柘寺、百花山和妙峰山樱桃园的游客接待量表示出来;
(3)根据以上信息,预估2016年门头沟游客接待总量约为24.4205万人次,你的预估理由是2015年游客接待总量增长百分率为10.5%,估计2016年游客接待总量增长百分率也大约为10.5%.

查看答案和解析>>

科目: 来源: 题型:解答题

7.(1)问题发现
如图1,△ABC和△ADE均为等边三角形,点D在BC的延长线上,连接CE,请填空:
①∠ACE的度数为60°;
②线段AC、CD、CE之间的数量关系为AC=CE-CD.
(2)拓展探究
如图2,△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,点D在边BC的延长线上,连接CE请判断∠ACE的度数及线段AC、CD、CE之间的数量关系,并说明理由.
(3)问题解决
如图3,在Rt△ABC中,AC=3,BC=5,∠ACB=90°,若点P满足PA=PB,∠APB=90°,请直接写出线段PC的长度.

查看答案和解析>>

科目: 来源: 题型:填空题

6.若2x3ym-1与$-\frac{1}{2}$xny5是同类项,则m+n=9.

查看答案和解析>>

科目: 来源: 题型:解答题

5.计算:
(1)23×(-5)-(-3)÷$\frac{3}{128}$;
(2)(-3)×$2\frac{2}{3}$+8×(-2$\frac{2}{3}$)-11÷(-$\frac{3}{8}$);
(3)(-1)2-(-1$\frac{3}{8}+2\frac{1}{3}-3\frac{3}{4}$)×(-24);
(4)$\frac{1}{2}×$(-2)2-($\frac{1}{3}$)3+[1+(-$\frac{2}{3}$)2×(-1$\frac{7}{8}$)].

查看答案和解析>>

同步练习册答案