相关习题
 0  286141  286149  286155  286159  286165  286167  286171  286177  286179  286185  286191  286195  286197  286201  286207  286209  286215  286219  286221  286225  286227  286231  286233  286235  286236  286237  286239  286240  286241  286243  286245  286249  286251  286255  286257  286261  286267  286269  286275  286279  286281  286285  286291  286297  286299  286305  286309  286311  286317  286321  286327  286335  366461 

科目: 来源: 题型:解答题

11.观察下列算式:
①1×3-22=-1
②2×4-32=-1
③3×5-42=-1
(1)请你安照以上规律写出第四个算式:④4×6-52=-1;
(2)这个规律用含n(n为正整数,n≥1)的等式表达为:(2n-1)(2n+1)-(2n)2=-1;
(3)你认为(2)中所写的等式一定成立吗?说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

10.用圆规、直尺作图,不写作法,但要保留作图痕迹.
已知:线段a,m(如图)
求作:等腰△ABC,使底边BC=a,底边上的中线AD=m.

查看答案和解析>>

科目: 来源: 题型:选择题

9.两个完全相同的三角形纸片,在平面直角坐标系中的摆放位置如图所示,点P与点P′是一对对应点,若点P的坐标为(a,b),则点P′的坐标为(  )
A.(3-a,-b)B.(b,3-a)C.(a-3,-b)D.(b+3,a)

查看答案和解析>>

科目: 来源: 题型:解答题

8.如图是某种货车自动卸货时的示意图,AC是水平汽车底盘,OB是液压举升杠杆,货车卸货时车厢AB与底盘AC的夹角为30°,举升杠杆OB与底盘AC的夹角为75°,已知O与A的距离为4米,试求货车卸货时举升杠杆OB的长($\sqrt{2}≈1.414$,精确到0.01米).

查看答案和解析>>

科目: 来源: 题型:填空题

7.在等式3x-2y=1中,若用含x的代数式表示y,结果是y=$\frac{3x-1}{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

6.如图,在?ABCD中,M,N在对角线AC上,且AM=CN,求证:BM∥DN.

查看答案和解析>>

科目: 来源: 题型:解答题

5.认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.
(1)探究1:如图1,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.
(2)探究2:如图2中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.
(3)探究3:如图3中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?(直接写出结论)
(4)拓展:如图4,在四边形ABCD中,O是∠ABC与∠DCB的平分线BO和CO的交点,则∠BOC与∠A+∠D有怎样的关系?(直接写出结论).
(5)运用:如图5,五边形ABCDE中,∠BCD、∠EDC的外角分别是∠FCD、∠GDC,CP、DP分别平分∠FCD和∠GDC且相交于点P,若∠A=140°,∠B=120°,∠E=90°,则∠CPD=95度.

查看答案和解析>>

科目: 来源: 题型:解答题

4.如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O,与斜边AB交于点D、E为BC边的中点,连接DE.
(1)求证:DE是⊙O的切线;
(2)填空:①若∠B=30°,AC=2$\sqrt{3}$,则DE=3;
②当∠B=45°时,以O,D,E,C为顶点的四边形是正方形.

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知关于x的方程mx2+(3m+1)x+3=0.
(1)求证:不论m为任何实数,此方程总有实数根;
(2)若抛物线y=mx2+(3m+1)x+3与x轴交于两个不同的整数点,且m为正整数,试确定此抛物线的解析式;(温馨提示:整数点的横、纵坐标都为整数)
(3)若点P(x1,y1)与Q(x1+n,y2)在(2)中抛物线上 (点P、Q不重合),且y1=y2,求代数式4x12+12x1n+5n2+16n+2000的值.

查看答案和解析>>

科目: 来源: 题型:填空题

2.若∠A度数是正六边形的一个内角度数的$\frac{1}{2}$,则cosA=$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案