相关习题
 0  286978  286986  286992  286996  287002  287004  287008  287014  287016  287022  287028  287032  287034  287038  287044  287046  287052  287056  287058  287062  287064  287068  287070  287072  287073  287074  287076  287077  287078  287080  287082  287086  287088  287092  287094  287098  287104  287106  287112  287116  287118  287122  287128  287134  287136  287142  287146  287148  287154  287158  287164  287172  366461 

科目: 来源: 题型:选择题

8.如图,在⊙O中,AB为直径,点C在⊙O上,连接AC,BC,D是劣弧AC的中点,连接OD,交AC于点E,连接BD,交CE于点F,若EF:CF=1:3,OE=1.5,则BD的长度为(  )
A.3B.5C.2$\sqrt{3}$D.2$\sqrt{5}$

查看答案和解析>>

科目: 来源: 题型:选择题

7.要使(x-3)•M=x2+x+N成立,且M是一个多项式,N是一个整数,则(  )
A.M=x-4,N=12B.M=x-5,N=15C.M=x+4,N=-12D.M=x+5,N=-15

查看答案和解析>>

科目: 来源: 题型:选择题

6.93号汽油价格上次已按原价降低了b元/升,现在又下调5%,使价格降到a元/升.那么原价格为(  )元/升.
A.$\frac{19}{20}$a-bB.$\frac{20}{19}$a-bC.$\frac{19}{20}$a+bD.$\frac{20}{19}$a+b

查看答案和解析>>

科目: 来源: 题型:选择题

5.如图,已知∠A=30°,∠B=42°,则∠ADC的度数为(  )
A.72°B.102°C.138°D.150°

查看答案和解析>>

科目: 来源: 题型:选择题

4.已知a,b为正整数,满足ab-2b-a-24=0,则a+b的最大值为(  )
A.7B.18C.29D.30

查看答案和解析>>

科目: 来源: 题型:选择题

3.如图,在四边形ABCD中,AB=10,BC=17,CD=13,DA=20,AC=21.则BD=(  )
A.$10\sqrt{3}$B.$10\sqrt{5}$C.$10\sqrt{6}$D.$10\sqrt{7}$

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图1,菱形ABCD中,AB=5,tan∠CAB=$\frac{1}{2}$,△EFG中,∠FEG=90°,EF=2,EG=1,将菱形ABCD与△EFG如图摆放,使点A与E重合,F、A、E、B共线,现将△EFG沿着射线AC以每秒$\sqrt{5}$个单位的速度平移,当点E与点C重合时停止平移,设平移时间为t秒.

(1)求点C到AB的距离;
(2)在平移过程中,当△EFG与△ACD有重叠部分时,设重叠部分的面积为S,请直接写出S与t的函数关系式及对应的自变量t的取值范围;
(3)如图2,当△EFG停止平移时,将△EFG绕点C顺时针旋转α°(0°<α<180°),在旋转过程中,设FG所在直线与AC所在直线交于点M,与AD所在直线交于点N,问△AMN能否为等腰三角形?若能,请求出GM的值;若不能,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

1.如图1直角梯形ABCD中,∠ABC=90°,AB∥CD,AB=8,CD=3,BC=$\frac{5}{2}$,在Rt△EFG中,∠GEF=90°,EF=3,GE=6,将△EFG与直角梯形ABCD如图(2)摆放,使E与A重合,EF与AB重合,△EFG与梯形ABCD在直线AB的同侧,现将△EFG沿射线AB向右以每秒1个单位的速度平移,当点C落在线段FG上时停止运动,在平移过程中,设△EFG与梯形ABCD的重叠部分面积为S,运动时间为t秒(t≥0).
(1)求出GF边经过点D时的时间t;
(2)若在△GEF运动过程中,设△GEF与梯形ABCD的重叠部分面积为S,请写出S与t的函数关系式;
(3)如图3,当点C在线段GF上时,将此时的△EFG沿FG翻折,得到△HFG,将△HFG绕点F旋转,在旋转过程中,设直线HG与射线AD交于点M,与射线AB交于点N,是否存在钝角△AMN为等腰三角形?若存在,求出此时AN的长;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

17.在△ABC中,∠C>∠B,AE是△ABC的角平分线.
(1)如图①,AD⊥BC于点D,试说明∠EAD=$\frac{1}{2}$(∠C-∠B).
(2)如图②,F是AE上一点,FD⊥BC于D,这时∠EFD与∠B,∠C有怎样的数量关系?
(3)如图③,F是线段AE延长线上一点,FD⊥BC于D,这时∠EFD与∠B,∠C又有怎样的数量关系,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

16.求|x-3|+|x+1|+|x-2|的最小值以及取最小值时x的值.

查看答案和解析>>

同步练习册答案