相关习题
 0  287135  287143  287149  287153  287159  287161  287165  287171  287173  287179  287185  287189  287191  287195  287201  287203  287209  287213  287215  287219  287221  287225  287227  287229  287230  287231  287233  287234  287235  287237  287239  287243  287245  287249  287251  287255  287261  287263  287269  287273  287275  287279  287285  287291  287293  287299  287303  287305  287311  287315  287321  287329  366461 

科目: 来源: 题型:解答题

13.求当a为何值时,代数式$\frac{5a+4}{6}$的值不大于代数式$\frac{7}{8}$-$\frac{1-a}{3}$的值?在数轴上表示解集,并求出满足条件的最大整数.

查看答案和解析>>

科目: 来源: 题型:解答题

12.若a2-6a+9与|b-1|互为相反数,求(2a+b)2-2(2a+b)+1的值.

查看答案和解析>>

科目: 来源: 题型:解答题

11.贵州省清镇体育训练基地,有一块边长为(2m+3n)米的正方形土地(如图所示),现准备在这块正方形土地上修建一个长为(2m+2n)米,宽为(m+n)米的长方形游泳池,剩余部分(图中阴影部分)修建成休息区域.
(1)试用含m,n的式子表示休息区域的面积;(结果要化简)
(2)若m=15米,n=10米,求休息区域的面积.

查看答案和解析>>

科目: 来源: 题型:解答题

10.数学问题:计算$\frac{1}{m}+\frac{1}{{m}^{2}}+\frac{1}{{m}^{3}}+…+\frac{1}{{m}^{n}}$*(其中m,n都是正整数,且m≥2,n≥1)
探究问题:为解决上面的数字问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究.
探究一:计算$\frac{1}{2}+\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+…+\frac{1}{{2}^{n}}$
第1次分割,把正方形的面积二等分,其中阴影部分的面积为$\frac{1}{2}$;
第2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为$\frac{1}{2}+\frac{1}{{2}^{2}}$;
第3次分割,把上次分割图中空白部分的面积继续二等分,…;

第n次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为$\frac{1}{2}+\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+…+\frac{1}{{2}^{n}}$,最后空白部分的面积是$\frac{1}{{2}^{n}}$.
根据第n次分割图可得等式:$\frac{1}{2}+\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+…+\frac{1}{{2}^{n}}$=1-$\frac{1}{{2}^{n}}$.

探究二:计算$\frac{1}{3}$+$\frac{1}{{3}^{2}}+\frac{1}{{3}^{3}}+…+\frac{1}{{3}^{n}}$.
第1次分割,把正方形的面积三等分,其中阴影部分的面积为$\frac{2}{3}$;
第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为$\frac{2}{3}+\frac{2}{{3}^{2}}$;
第3次分割,把上次分割图中空白部分的面积继续三等分,…;

第n次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为$\frac{2}{3}$+$\frac{2}{{3}^{2}}+\frac{2}{{3}^{3}}+…+\frac{2}{{3}^{n}}$,最后空白部分的面积是$\frac{1}{{3}^{n}}$.
根据第n次分割图可得等式:$\frac{2}{3}$+$\frac{2}{{3}^{2}}+\frac{2}{{3}^{3}}+…+\frac{2}{{3}^{n}}$=1-$\frac{1}{{3}^{n}}$.
两边同除以2,得$\frac{1}{3}$+$\frac{1}{{3}^{2}}+\frac{1}{{3}^{3}}+…+\frac{1}{{3}^{n}}$=$\frac{1}{2}$$-\frac{1}{2×{3}^{n}}$\

探究三:计算$\frac{1}{4}+\frac{1}{{4}^{2}}+\frac{1}{{4}^{3}}+..+\frac{1}{{4}^{n}}$.
(仿照上述方法,只画出第n次分割图,在图上标注阴影部分面积,并写出探究过程)

解决问题:根据前面探究结果:
$\frac{1}{2}+\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+…+\frac{1}{{2}^{n}}$=1-$\frac{1}{{2}^{n}}$
$\frac{1}{3}$+$\frac{1}{{3}^{2}}+\frac{1}{{3}^{3}}+…+\frac{1}{{3}^{n}}$=$\frac{1}{2}$$-\frac{1}{2×{3}^{n}}$
$\frac{1}{4}+\frac{1}{{4}^{2}}+\frac{1}{{4}^{3}}+..+\frac{1}{{4}^{n}}$=$\frac{1}{3}$-$\frac{1}{3×{4}^{n}}$.

推出:$\frac{1}{m}+\frac{1}{{m}^{2}}+\frac{1}{{m}^{3}}+…+\frac{1}{{m}^{n}}$=$\frac{1}{m-1}$-$\frac{1}{(m-1){m}^{n}}$.(只填空,其中m、n都是正整数,且m≥2,n≥1)
拓广应用:计算$\frac{5-1}{5}+\frac{{5}^{2}-1}{{5}^{2}}+\frac{{5}^{3}-1}{{5}^{3}}+…+\frac{{5}^{n}-1}{{5}^{n}}$.

查看答案和解析>>

科目: 来源: 题型:解答题

9.如图,△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,B,C,D在同一直线上,连接EC.求证:EC⊥BD.

查看答案和解析>>

科目: 来源: 题型:解答题

8.在矩形ABCD中,AB=6,BC=4,动点P从点B出发,沿着B→C→D→A点停止,设点P运动的路程为x,△ABP的面积为y,请用x表示y.

查看答案和解析>>

科目: 来源: 题型:解答题

7.求方程2xy-x-y-3=0的整数解.

查看答案和解析>>

科目: 来源: 题型:填空题

6.如图,直线AB∥CD,AG⊥EF,垂足为G,则图中与∠GAH互余的角是∠FHB,∠AEH,∠EGC,∠DGH.

查看答案和解析>>

科目: 来源: 题型:解答题

5.如图,矩形ABCD的对角线AC与BD相交于点M,矩形MNPQ与矩形ABCD全等,射线MN与MQ分别交BC边于E、F两点,若AB=2,求证:$\frac{1}{M{E}^{2}}$+$\frac{1}{M{F}^{2}}$=1.

查看答案和解析>>

科目: 来源: 题型:填空题

4.2008年第29届夏季奥林匹克运动会在北京举行,如图是奥林匹克运动会的五环标志,现在a,b,c,d,e,f,g,h,i之处分别填入1~9这9个整数中不同的一个,如果每一个环内的数字和都相等,记为M,则M的最大值是14.

查看答案和解析>>

同步练习册答案