8.如图1,抛物线 y=-$\frac{3}{4}$x
2-$\frac{3}{2}$x+6与x轴交于A、B两点(点A在B 的左侧),交y轴交于点C,点D是线段AC的中点,直线BD与抛物线 y=-$\frac{3}{4}$x
2-$\frac{3}{2}$x+6交于另一点E,交y轴交于点F.
(1)求直线BE的解析式;
(2)如图2,点P是直线BE上方抛物线上一动点,连接PD、PF,当△PDF的面积最大时,在线段BE上找一点G(不与E、B重合),使得PG-$\frac{3}{5}$GE的值最小,求出点G的坐标及PG-$\frac{3}{5}$GE的最小值;
(3)如图3,将△OBF绕点B顺时针旋转α度(0°<α<180°),记旋转过程中的△OBF为△O
1BF
1,直线O
1F
1与x轴交于点M,与直线BE交于点N.在△OBF旋转过程中,是否存在一个合适的位置,使得△MNB是一个等腰三角形?若存在,请直接写出所有符合条件的点N的坐标;若不存在,请说明理由.
