相关习题
 0  288336  288344  288350  288354  288360  288362  288366  288372  288374  288380  288386  288390  288392  288396  288402  288404  288410  288414  288416  288420  288422  288426  288428  288430  288431  288432  288434  288435  288436  288438  288440  288444  288446  288450  288452  288456  288462  288464  288470  288474  288476  288480  288486  288492  288494  288500  288504  288506  288512  288516  288522  288530  366461 

科目: 来源: 题型:填空题

8.如图,用12米长的铝合金做一个有横档的矩形窗子,横档长为x,矩形窗子的宽为y,则y关于x的函数解析式为y=-1.5x+6.

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知抛物线y=ax2+6x-4与直线y=6x相交于点A(2,m)
(1)求a的值;
(2)请问抛物线经过怎样的平移就可以得到y=ax2的图象?

查看答案和解析>>

科目: 来源: 题型:解答题

6.计算:($\sqrt{3}+\sqrt{2}$-1)($\sqrt{3}$-$\sqrt{2}$-1)

查看答案和解析>>

科目: 来源: 题型:选择题

5.如图,已知Rt△OAB,∠OAB=60°,∠AOB=90°,O点与坐标系原点重合,若点P在x轴上,且△APB是等腰三角形,则点P的坐标可能有(  )个.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目: 来源: 题型:解答题

4.思考题
观察下列等式
$\frac{1}{1×2}$=1-$\frac{1}{2}$,$\frac{1}{2×3}$=$\frac{1}{2}$-$\frac{1}{3}$,$\frac{1}{3×4}$=$\frac{1}{3}$-$\frac{1}{4}$,
将以上三个等式两边分别相加得:
$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$=1-$\frac{1}{4}$=$\frac{3}{4}$.
(1)猜想并写出:$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$.
(2)直接写出下列各式的计算结果:
①$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{2006×2007}$=$\frac{2006}{2007}$;
②$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{n(n+1)}$=$\frac{n}{n+1}$.

查看答案和解析>>

科目: 来源: 题型:填空题

3.如图△ABC中,tan∠C=$\frac{1}{2}$,DE⊥AC,若CE=5,DE=1,且△BEC的面积是△ADE面积的10倍,则BE的长度是$\sqrt{5}$.

查看答案和解析>>

科目: 来源: 题型:解答题

2.a、b、c、d表示4个有理数,其中每三个数之和是-1,-3,2,17,且a>b>c>d,求a、b、c、d.

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知抛物线y=ax2-2ax+c与x轴交于A(-1,0)、B两点,交y轴于点C,E(-2,5)、F两点在抛物线上.
(1)求二次函数解析式;
(2)若△ACF的一个角的角平分线在坐标轴上,求点F的坐标;
(3)若△CEF的面积为5,直接写出点F的坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

20.解方程|x-3|+|x+2|=5.

查看答案和解析>>

科目: 来源: 题型:解答题

19.观察式子$\frac{1}{1×3}$=$\frac{1}{2}$×(1-$\frac{1}{3}$),$\frac{1}{3×5}$=$\frac{1}{2}$×($\frac{1}{3}$-$\frac{1}{5}$),$\frac{1}{5×7}$=$\frac{1}{2}$($\frac{1}{5}$-$\frac{1}{7}$)…
(1)依照上面式子,对任意正整数n,可得$\frac{1}{n(n+2)}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$);
(2)计算:$\frac{1}{1×3}$+$\frac{1}{2×4}$+$\frac{1}{3×5}$+…+$\frac{1}{2011×2013}$+$\frac{1}{2012×2014}$+$\frac{1}{2013×2015}$.

查看答案和解析>>

同步练习册答案