10.观察下列一组式子的变形过程,然后回答问题:
例 1:$\frac{1}{{\sqrt{2}+1}}$=$\frac{{\sqrt{2}-1}}{{(\sqrt{2}+1)(\sqrt{2}-1)}}$=$\frac{{\sqrt{2}-1}}{{{{(\sqrt{2})}^2}-1}}$=$\frac{{\sqrt{2}-1}}{1}$=$\sqrt{2}$-1.
例 2:$\frac{1}{{\sqrt{3}+\sqrt{2}}}$=$\sqrt{3}-\sqrt{2}$,$\frac{1}{{\sqrt{4}+\sqrt{3}}}$=$\sqrt{4}$-$\sqrt{3}$,$\frac{1}{{\sqrt{5}+\sqrt{4}}}$=$\sqrt{5}$-$\sqrt{4}$,…
(1)填空:$\frac{1}{\sqrt{6}+\sqrt{5}}$=10-3$\sqrt{11}$; $\frac{1}{\sqrt{100}+\sqrt{99}}$=10-3$\sqrt{11}$.
(2)请你用含 n(n为正整数)的关系式表示上述各式子的变形规律:$\frac{1}{\sqrt{n}+\sqrt{n-1}}$=$\sqrt{n}$-$\sqrt{n-1}$.
(3)利用上面的结论,求下列式子的值(要有计算过程).$\frac{1}{{\sqrt{1}+\sqrt{2}}}$+$\frac{1}{{\sqrt{2}+\sqrt{3}}}$+$\frac{1}{{\sqrt{3}+\sqrt{4}}}$+…+$\frac{1}{{\sqrt{9999}+\sqrt{10000}}}$.