相关习题
 0  291558  291566  291572  291576  291582  291584  291588  291594  291596  291602  291608  291612  291614  291618  291624  291626  291632  291636  291638  291642  291644  291648  291650  291652  291653  291654  291656  291657  291658  291660  291662  291666  291668  291672  291674  291678  291684  291686  291692  291696  291698  291702  291708  291714  291716  291722  291726  291728  291734  291738  291744  291752  366461 

科目: 来源: 题型:解答题

11.我区有着丰富的莲藕资源.某企业已收购莲藕52.5吨.根据市场信息,将莲藕直接销售,每吨可获利100元;如果对莲藕进行粗加工,每天可加工8吨,每吨可获利1000元;如果进行精加工,每天可加0.5吨,每吨可获利5000元.由于受条件限制,在同一天中只能采用一种方式加工,并且必须在一个月(30天)内将这批莲藕全部销售.为此研究了二种方案:
方案一:将莲藕全部粗加工后销售,则可获利52500 元.
方案二:30天时间都进行精加工,未来得及加工的莲藕,在市场上直接销售,则可获利78750 元.
问:是否存在第三种方案,将部分莲藕精加工,其余莲藕粗加工,并且恰好在30天内完成?若存在,求销售后所获利润;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:填空题

10.因式分解:3x2+2x-5=(3x+5)(x-1).

查看答案和解析>>

科目: 来源: 题型:填空题

9.如图,网高为0.8米,击球点到网的水平距离为3米,小明在打网球时,要使球恰好能打过网,且落点恰好在离网4米的位置上,则球拍击球的高度h为1.4米.

查看答案和解析>>

科目: 来源: 题型:解答题

8.在等边△ABC中,E为BC边上一点,G为BC延长线上一点,过点E作∠AEM=60°,交∠ACG的平分线于点M.
(1)如图(1),当点E在BC边的中点位置时,通过测量AE,EM的长度,猜想AE与EM满足的数量关系是相等;
(2)如图(2),小晏通过观察、实验,提出猜想:当点E在BC边的任意位置时,始终有AE=EM.小晏把这个猜想与同学进行交流,通过讨论,形成了证明该猜想的几种想法:
想法1:在BA上取一点H使AH=CE,连接EH,要证AE=EM,只需证△AHE≌△ECM.
想法2:找点A关于直线BC的对称点F,连接AF,CF,EF.(易证∠BCF+∠BCA+ACM=180°,所以M,C,F三点在同一直线上)要证AE=EM,只需证△MEF为等腰三角形.
想法3:将线段BE绕点B顺时针旋转60°,得到线段BF,连接CF,EF,要证AE=EM,只需证四边形MCFE为平行四边形.
请你参考上面的想法,帮助小晏证明AE=EM.(一种方法即可)

查看答案和解析>>

科目: 来源: 题型:解答题

7.如图,四边形ABCD是平行四边形,AE平分∠BAD,交DC的延长线于点E,AB=3,EF=0.8,AF=2.4.求AD的长.

查看答案和解析>>

科目: 来源: 题型:解答题

6.阅读与计算,请阅读以下材料,并完成相应的问题.
角平分线分线段成比例定理,如图1,在△ABC中,AD平分∠BAC,则$\frac{AB}{AC}$=$\frac{BD}{CD}$.下面是这个定理的部分证明过程.
证明:如图2,过C作CE∥DA.交BA的延长线于E.…
任务:
(1)请按照上面的证明思路,写出该证明的剩余部分;
(2)填空:如图3,已知Rt△ABC中,AB=3,BC=4,∠ABC=90°,AD平分∠BAC,则△ABD的周长是$\frac{9+3\sqrt{5}}{2}$.

查看答案和解析>>

科目: 来源: 题型:填空题

5.如图,点E是?ABCD的边AD的中点,BE与AC相交于点P,则S△APE:S△BCP=1:4.

查看答案和解析>>

科目: 来源: 题型:选择题

4.在△ABC中,点D,E分别在边AB,AC上,$\frac{AD}{BD}$=$\frac{1}{2}$,要使DE∥BC,还需满足下列条件中的(  )
A.$\frac{DE}{BC}$=$\frac{1}{2}$B.$\frac{DE}{BC}$=$\frac{1}{3}$C.$\frac{AE}{AC}$=$\frac{1}{2}$D.$\frac{AE}{AC}$=$\frac{1}{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

3.在△ABC中,点D、E分别在边AB、AC上,如果AD=2,BD=4,那么由下列条件能够判断DE∥BC的是(  )
A.$\frac{AE}{AC}=\frac{1}{2}$B.$\frac{DE}{BC}=\frac{1}{3}$C.$\frac{AE}{AC}=\frac{1}{3}$D.$\frac{DE}{BC}=\frac{1}{2}$

查看答案和解析>>

科目: 来源: 题型:填空题

2.计算:($\sqrt{5}$+$\sqrt{3}$)($\sqrt{5}$-$\sqrt{3}$)=2;$\sqrt{7}$÷$\sqrt{\frac{1}{7}}$=7;±$\sqrt{9}$=±3.

查看答案和解析>>

同步练习册答案