相关习题
 0  291596  291604  291610  291614  291620  291622  291626  291632  291634  291640  291646  291650  291652  291656  291662  291664  291670  291674  291676  291680  291682  291686  291688  291690  291691  291692  291694  291695  291696  291698  291700  291704  291706  291710  291712  291716  291722  291724  291730  291734  291736  291740  291746  291752  291754  291760  291764  291766  291772  291776  291782  291790  366461 

科目: 来源: 题型:填空题

14.如图所示,将一张三角形纸片分别沿着BD,BE对折,使点C落在点C′,点A落在点A′,点B,A′,C′在同一条直线上,若∠ABC=130°,则∠DBE=65度.

查看答案和解析>>

科目: 来源: 题型:解答题

13.如图,P为边长为6的正方形ABCD的边BC上一动点(P与B、C不重合),Q在CD上,且CQ=BP,连接AP、BQ,将△BQC沿BQ所在的直线翻折得到△BQE,延长QE交BA的延长线于点F.
(1)试探究AP与BQ的数量与位置关系,并证明你的结论;
(2)当E是FQ的中点时,求BP的长;
(3)若BP=2PC,求QF的长.

查看答案和解析>>

科目: 来源: 题型:填空题

12.如图,在Rt△ABC中,AB=18,BC=12,将△ABC折叠,使A点与BC的中点D重合,折痕为EF,则线段DF的长为10.

查看答案和解析>>

科目: 来源: 题型:解答题

11.如图是小强用八块相同的小立方体搭成的一个几何体,从正面、左面和上面观察这个几何体,请你在下面相应的位置分别画出你所看到的几何体的形状图(在答题卡上画完图后请用黑色签字笔描图)

查看答案和解析>>

科目: 来源: 题型:解答题

10.在平面直角坐标系中,A(a,0),B(0,b),且a,b满足$\sqrt{-(a+2)^{2}}$-(b-6)2=0.
(1)求OA、0B的长度;
(2)若P从点B出发沿着射线BO方向运动(点P不与原点重合),速度为每秒2个单位长度,连接AP,设点P的运动时间为t,△AOP的面积为S.请你用含t的式子表示S.
(3)在(2)的条件下,点Q从A点沿x轴正方向运动,点Q与点P同时运动,Q点速度为每秒1个单位长度;当S=4时,求△APQ与以A、B、P、Q为顶点的四边形的面积之比的值.

查看答案和解析>>

科目: 来源: 题型:解答题

9.如图1,在平面直角坐标系中,直线AB与x轴,y轴分别交于点A(2,0),B(0,4).
(1)求直线AB的解析式;
(2)若点M为直线y=mx在第一象限上一点,且△ABM是等腰直角三角形,求m的值.
(3)如图3,过点A(2,0)的直线y=kx-2k交y轴负半轴于点P,N点的横坐标为-1,过N点的直线y=$\frac{k}{2}$x-$\frac{k}{2}$交AP于点M.求$\frac{PM-PN}{AM}$的值.

查看答案和解析>>

科目: 来源: 题型:解答题

8.如图,抛物线顶点坐标为点C(2,8),交x轴于点A (6,0),交y轴于点B.
(1)求抛物线和直线AB的解析式;
(2)点Q (x,0)是线段OA上的一动点,过Q点作x轴的垂线,交抛物线于P点,交直线BA于D点,求PD与x之间的函数关系式并求出PD的最大值;
(3)x轴上是否存在一点Q,过点Q作x轴的垂线,交抛物线于P点,交直线BA于D点,使以PD为直径的圆与y轴相切?若存在,求出Q点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

7.在Rt△ABC中,∠ACB=90°,AC=BC=2,点P为边BC上的一动点(不与B、C重合),点P关于直线AC、AB的对称点分别为M、N,连接MN交边AB于点F,交边AC于点E.
(1)如图1,当点P为边BC的中点时,求∠M的正切值;
(2)连接FP,设CP=x,S△MPF=y,求y关于x的函数关系式,并写出定义域;
(3)连接AM,当点P在边BC上运动时,△AEF与△ABM是否一定相似?若是,请证明;若不是,请求出当△AEF与△ABM相似时CP的长.

查看答案和解析>>

科目: 来源: 题型:解答题

6.如图,已知二次函数y=ax2+bx+8(a≠0)的图象与x轴交于点A(-2,0),
B(4,0)与y轴交于点C.
(Ⅰ)求抛物线的解析式及其顶点D的坐标;
(Ⅱ)求△BCD的面积;
(Ⅲ)若直线CD交x轴与点E,过点B作x轴的垂线,交直线CD与点F,将抛物线沿其对称轴向上平移,使抛物线与线段EF总有公共点.试探究抛物线最多可以向上平移多少个单位长度(直接写出结果,不写求解过程).

查看答案和解析>>

科目: 来源: 题型:解答题

5.将直角边长为6的等腰直角△AOC放在平面直角坐标系中,点O为坐标原点,点C、A分别在x轴,y轴的正半轴上,一条抛物线经过点A、C及点B(-3,0).
(1)求该抛物线的解析式;
(2)若点P是线段BC上一动点,过点P作AB的平行线交AC于点E,连接AP,当△APE的面积最大时,求点P的坐标;
(3)若点P(t,t)在抛物线上,则称点P为抛物线的不动点,将(1)中的抛物线进行平移,平移后,该抛物线只有一个不动点,且顶点在直线y=2x-$\frac{7}{4}$上,求此时抛物线的解析式.

查看答案和解析>>

同步练习册答案