相关习题
 0  291597  291605  291611  291615  291621  291623  291627  291633  291635  291641  291647  291651  291653  291657  291663  291665  291671  291675  291677  291681  291683  291687  291689  291691  291692  291693  291695  291696  291697  291699  291701  291705  291707  291711  291713  291717  291723  291725  291731  291735  291737  291741  291747  291753  291755  291761  291765  291767  291773  291777  291783  291791  366461 

科目: 来源: 题型:解答题

4.如图,△ABC内接于⊙O,且AB=AC,延长BC至点D,使CD=AC,连接AD交⊙O交于点E,连接BE,CE.
(1)求证:AE=CE;
(2)若CE∥AB,求证:DE2=AE•AD.

查看答案和解析>>

科目: 来源: 题型:解答题

3.如图,抛物线y=ax2-2ax-3a交x轴于点A、B(A左B右),交y轴于点C,S△ABC=6,点P为第一象限内抛物线上的一点.
(1)求抛物线的解析式;
(2)若∠PCB=45°,求点P的坐标;
(3)点Q为第四象限内抛物线上一点,点Q的横坐标比点P的横坐标大1,连接PC、AQ,当PC=$\frac{5}{9}$AQ时,求点P的坐标以及△PCQ的面积.

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图,一次函数y=-$\frac{3}{4}$x+3的图象与x轴,y轴分别交于A,B两点,与反比例函数y=$\frac{k}{x}$(x>0)的图象交于点C(2,n),过点C作CD⊥x轴,垂足为D.
(1)求k的值;
(2)将线段OD绕点O逆时针旋转得到OE,旋转角为β(0°<β<90°)
①若直线OE与反比例函数y=$\frac{k}{x}$(x>0)的图象交于点M,设线段OM的长为m,当β=60°时,求m2的值;
②连接EA、EB,当EA+$\frac{2}{3}$EB最小时,请写出求cosβ值的解题思路,可以不写出计算结果.

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知抛物线y=-x2+bx+3交x轴负、正半轴于A、B两点,交y轴与点C,且tan∠ACO=$\frac{1}{3}$,△ABC的外接圆的圆心为M.
(1)求该二次函数的解析式;
(2)在x轴上方的抛物线上是否存在一点P,使S△BCP=3,若存在请求出点P坐标,若不存在,说明理由;
(3)圆上是否存在Q点,使△AOC与△BQC相似?若存在,直接写出点Q坐标;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

20.在△ABC中,BC=AC,∠BCA=90°,P为直线AC上一点,过点A作AD⊥BP于点D,交直线BC于点Q.

(1)如图1,当P在线段AC上时,求证:BP=AQ;
(2)如图2,当P在线段CA的延长线上时,(1)中的结论是否成立?成立(填“成立”或“不成立”)
(3)在(2)的条件下,当∠DBA=22.5°度时,存在AQ=2BD,说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

19.如图,∠AOB=∠COD=90°,
(1)指出图中以点O为顶点的角中,互为补角的角并说明理由.
(2)若∠COB=$\frac{3}{7}$∠AOD,求∠AOD的度数.

查看答案和解析>>

科目: 来源: 题型:解答题

18.如图,在平面直角坐标系中,射线OA交反比例函数y=$\frac{1}{x}$(x>0)图象于点P,点R为反比例函数y=$\frac{1}{x}$(x>0)图象上的另一点,且PR=2OP,分别过点P、R作x轴、y轴的平行线,两线相交于点M(a,b),直线MR交x轴于点B,过点P作y轴的平行线分别交直线OM和x轴于点Q、H,连接RQ.
(1)求出点P、R的坐标和直线OM 的解析式(用含a、b 的式子表示);
(2)试探究∠MOB和∠AOB之间的数量关系,并说明理由;
(3)如果将反比例函数y=$\frac{1}{x}$(x>0)改为y=$\frac{k}{x}$(k>0,x>0)时,上述(2)中的结论是否成立是(填“是”或“否”).

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知y1=a1(x-m)2+5,点(m,25)在抛物线y2=a2x2+b2x+c2上,其中m>0.
(1)若a1=-1,点(1,4)在抛物线y1=a1(x-m)2+5上,求m的值;
(2)记O为坐标原点,抛物线y2=a2x2+b2x+c2的顶点为M,若c2=0,点A(2,0)在此抛物线上,∠OMA=90°,求点M的坐标;
(3)若y1+y2=x2+16x+13,且4a2c2-b22=-8a2,求抛物线y2=a2x2+b2x+c2的解析式.

查看答案和解析>>

科目: 来源: 题型:填空题

16.如图,在△ABC中,∠C=90°,∠ABC=60°,若CD=2,AB=6,则S△ABD=$\frac{9\sqrt{3}}{2}$-3.

查看答案和解析>>

科目: 来源: 题型:解答题

15.如图,在△ABC中,AQ平分∠BAC,QD⊥BC交BC于点D,在BC上取一点E,使得∠BAD=∠CAE,在AE上存在一点K,使得∠KBC=2∠BQD,求证:QK平分∠BKC.

查看答案和解析>>

同步练习册答案