相关习题
 0  291679  291687  291693  291697  291703  291705  291709  291715  291717  291723  291729  291733  291735  291739  291745  291747  291753  291757  291759  291763  291765  291769  291771  291773  291774  291775  291777  291778  291779  291781  291783  291787  291789  291793  291795  291799  291805  291807  291813  291817  291819  291823  291829  291835  291837  291843  291847  291849  291855  291859  291865  291873  366461 

科目: 来源: 题型:解答题

11.(1)已知:如图1,△ABC为等边三角形,点D为BC边上的一动点(点D不与B、C重合),以AD为边作等边△ADE,连接CE.求证:①BD=CE,②AC=CE+CD;聪明的小明做完上题后进行了进一步变式探究.
(2)如图2,在△ABC中,∠BAC=90°,AC=AB,点D为BC上的一动点(点D不与B、C重合),以AD为边作等腰Rt△ADE,∠DAE=90°(顶点A、D、E按逆时针方向排列),连接CE,类比题(1),请你猜想线段BD、CD、DE之间会有怎样的关系,请直接写出,不需论证;
(3)如图3,在(2)的条件下,若D点在BC的延长线上运动,以AD为边作等腰Rt△ADE,∠DAE=90°(顶点A、D、E按逆时针方向排列),连接CE.
①题(2)的结论还成立吗?请说明理由;
②连结BE,若BE=10,BC=6,求AE的长.

查看答案和解析>>

科目: 来源: 题型:解答题

10.在△ABC中,∠ACB=90°,AC=BC,D是AB的中点,点E是边AC上的一动点,点F是边BC上的一动点.
(1)若AE=CF,试证明DE=DF;
(2)在点E、点F的运动过程中,若DE⊥DF,试判断DE与DF是否一定相等?并加以说明.
(3)在(2)的条件下,若AC=2,四边形ECFD的面积是一个定值吗?若不是,请说明理由,若是,请直接写出它的面积.

查看答案和解析>>

科目: 来源: 题型:选择题

9.等腰三角形一个底角为80°,则它的顶角的度数是(  )
A.80°B.50°C.80°或20°D.D20°

查看答案和解析>>

科目: 来源: 题型:选择题

8.数25的算术平方根为(  )
A.±5B.-5C.5D.25

查看答案和解析>>

科目: 来源: 题型:选择题

7.点A、B、C是同一直线上的三个点,若AB=8cm,BC=3cm,则AC=(  )
A.11cm或5cmB.5cmC.11cmD.11cm或3cm

查看答案和解析>>

科目: 来源: 题型:选择题

6.下列由左到右的变形,属于因式分解的是(  )
A.(x+2)(x-2)=x2-4B.x2-4=(x+2)(x-2)
C.x2-4+3x=(x+2)(x-2)+3xD.x2+4x-2=x(x+4)-2

查看答案和解析>>

科目: 来源: 题型:选择题

5.在$\frac{1}{x}$,$\frac{m+n}{m}$,$\frac{a{b}^{2}}{5}$,-0.7xy+y3,$\frac{b-c}{5+a}$,$\frac{3{x}^{2}}{π}$中,分式有(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目: 来源: 题型:选择题

4.下列运算中,正确的是(  )
A.x3•x3=x6B.3x2+2x3=5x5C.(x23=x5D.(ab)3=a3b

查看答案和解析>>

科目: 来源: 题型:解答题

3.问题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.

【发现证明】
小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图1证明上述结论.
【类比引申】
如图2,四边形ABCD中∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足∠BAD=2∠EAF关系时,仍有EF=BE+FD
【探究应用】
如图3,在某公园的同一水平面上,四条通道围成的ABCD,已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=40($\sqrt{3}-1)米$,米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据:$\sqrt{2}$=1.41,$\sqrt{3}$=1.73).

查看答案和解析>>

科目: 来源: 题型:解答题

2.(一)知识拓展
如图Ⅰ,AB∥CD,点E,F在AB上,点M,N在CD上,则S△MNE=S△MNF.即同底(或等底)等高(或同高)的三角形的面积相等.
(二)解决问题.
数学兴趣小组的同学利用含30°的角的三个全等直角三角板拼了下面的图形(如图Ⅱ).
已知∠ACB=∠AFE=∠DCF=90°,∠CAB=∠AEF=∠CDF=30°,点F在AB上.
(1)直接写出图中存在旋转关系的一对三角形;
(2)连接AD,判断四边形ADFE的形状,并写出理由.
(3)若点G是边DF上任意一点,连接GB,GC,设△CAF的面积为S1,△CBG的面积为S2,写出S1与S2间的数量关系,并证明你的结论.

查看答案和解析>>

同步练习册答案