相关习题
 0  291773  291781  291787  291791  291797  291799  291803  291809  291811  291817  291823  291827  291829  291833  291839  291841  291847  291851  291853  291857  291859  291863  291865  291867  291868  291869  291871  291872  291873  291875  291877  291881  291883  291887  291889  291893  291899  291901  291907  291911  291913  291917  291923  291929  291931  291937  291941  291943  291949  291953  291959  291967  366461 

科目: 来源: 题型:解答题

3.如图,坡面AB的长为40米,坡面的铅垂高度BC为20米.求坡面的坡度和坡角α的度数.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知a>0,直线L1:y=-$\frac{1}{4a}$与y轴交于点N,点N关于原点的对称点为点M,过点M的直线L2与抛物线y=ax2在第二象限交于点A,与直线L1交于点B,且MA=MB,平移直线L2,使之与抛物线有唯一公共点,且与y轴交于点P.求证:$\frac{OM}{OP}$为一定值.

查看答案和解析>>

科目: 来源: 题型:解答题

1.如图,在⊙O中,直径AB=4,点C在⊙O上,且∠AOC=60°,连接BC,点P在BC上(点P不与点B,C重合),连接OP并延长交⊙O于点M,过P作PQ⊥OM交$\widehat{AM}$于点Q.
(1)求BC的长;
(2)当PQ∥AB时,求PQ的长;
(3)点P在BC上移动,当PQ的长取最大值时,试判断四边形OBMC的形状,并说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

20.如图,在平面直角坐标系中,直线y=$\frac{1}{2}$x+2与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx+c的对称轴是x=-$\frac{3}{2}$且经过A、C两点,与x轴的另一交点为点B,连结BC.
(1)填空:点A、点B和点C的坐标分别为A(-4,0),B(1,0),C(0,2);
(2)求证:△AOC∽△COB;
(3)求抛物线解析式;
(4)若点P为直线AC上方的抛物线上的一点,连结PA,PC,求△PAC面积的最大值,并求出此时点P的坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

19.(1)(2ab24•(-6a2b)÷(-12a6b7
(2)(x+3)2-(x+2)(2-x)-2x2
(3)先化简,再求值:($\frac{a+1}{a-1}$+$\frac{1}{{a}^{2}-2a+1}$)÷$\frac{a}{a-1}$,其中a=2.

查看答案和解析>>

科目: 来源: 题型:解答题

18.如图,过点F(6,5)的抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C.且B(5,0)
(1)求此抛物线的解析式;
(2)若抛物线的对称轴交x轴于点E,交CF于点G,连接OG、EF,试判断四边形OEFG的形状,并说明理由;
(3)在(2)的条件下,连接OF交对称轴于点D,抛物线对称轴上是否存在点P,使△OFP是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

17.在矩形ABCD中,E在边BC上,且BE:CE=3:5,F为边AD上一动点,连接EF,将矩形ABCD沿EF翻折,使点C恰好落在AB边上的点C′处.
(1)如图1,当点C′与点A重合时,求证:BE=DF;
(2)如图2,当点F与点D重合时,求$\frac{BC}{AB}$的值;
(3)如图3,当$\frac{BC}{AB}$=$\frac{4}{3}$时,若DF=5,求线段AF的长.

查看答案和解析>>

科目: 来源: 题型:解答题

16.在Rt△ABC中,∠C=90°,a、b、c分别为∠A、∠B、∠C的对边长,tanA、tanB是关于x的一元二次方程x2-kx+12k2-37k+26=0的两个实数根.
(1)求k的值;
(2)若c=10,求a和b的值.

查看答案和解析>>

科目: 来源: 题型:解答题

15.(1)计算:(π-2017)0-$\frac{\sqrt{8}}{2}$+(sin45°)-1-|tan60°-$\sqrt{12}$|
(2)解方程:(x-1)(x-3)=6.

查看答案和解析>>

科目: 来源: 题型:填空题

14.已知菱形A1B1C1D1的边长为2,∠A1B1C1=60°,对角线A1C1、B1D1相交于点O,以点O为坐标原点,分别以OB1,OA1所在直线为x轴、y轴建立如图所示的直角坐标系,以B1D1为对角线作菱形B1C2D1A2∽菱形A1B1C1D1,再以A2C2为对角线作菱形A2B2C2D2∽菱形B1C2D1A2,再以B2D2为对角线作菱形B2C3D2A3∽菱形A2B2C2D2,…,按此规律继续作下去,在y轴的正半轴上得到点A1,A2,A3,…,An,则点A2017的坐标为(0,32016).

查看答案和解析>>

同步练习册答案