相关习题
 0  291777  291785  291791  291795  291801  291803  291807  291813  291815  291821  291827  291831  291833  291837  291843  291845  291851  291855  291857  291861  291863  291867  291869  291871  291872  291873  291875  291876  291877  291879  291881  291885  291887  291891  291893  291897  291903  291905  291911  291915  291917  291921  291927  291933  291935  291941  291945  291947  291953  291957  291963  291971  366461 

科目: 来源: 题型:解答题

3.如图四边形ABCD的四个顶点在同一个圆上,这样的四边四边形叫做圆内接四边形.
如图若∠BAD=70°,则∠BOD=140°;∠BCD=110°.
如图若∠BCD=100°,则∠BOD=160°;∠BAD=80°.
在计算中你发现∠BAD与∠BCD什么关系?
由此得出圆周角定理推理3:圆内接四边形对角互补.

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图,已知∠AOC=75°,∠BOC=50°,OD平分∠BOC,求∠AOD的度数.

查看答案和解析>>

科目: 来源: 题型:解答题

1.如图,直线l1:y1=-x+2与x轴,y轴分别交于A,B两点,点P(m,3)为直线l1上一点,另一直线l2:y2=$\frac{1}{2}$x+b过点P,与x轴交于点C.
(1)直接写出m和b的值及点A、点C的坐标;
(2)若动点Q从点C开始以每秒1个单位的速度向x轴正方向移动.设点Q的运动时间为t秒.
①当点Q在运动过程中,请直接写出△APQ的面积S与t的函数关系式;
②求出当t为多少时,△APQ的面积等于3;
③是否存在t的值,使△APQ为等腰三角形?若存在,请直接写出t的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

20.平面内的两条直线有相交和平行两种位置关系.

(1)如图2,若AB∥CD,点P在AB、CD内部,∠B=50°,∠D=30°,求∠BPD.
(2)如图1,在AB∥CD的前提下,将点P移到AB、CD外部,则∠BPD、∠B、∠D之间有何数量关系?并证明你的结论.
(3)在图2中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图3,写出∠BPD、∠B、∠D、∠BQD之间的数量关系.

查看答案和解析>>

科目: 来源: 题型:解答题

19.如图1,A(a,0),B(0,b)分别是x轴正半轴,y轴正半轴上的点,C(0,m)是线段OB上的点,且满足a+b=8,$\frac{b}{a}$+$\frac{a}{b}$=2.
(1)求△AOB的面积;
(2)若m是方程$\frac{1}{x-1}$+$\frac{3}{x+1}$=$\frac{6}{{x}^{2}-1}$的解,过O作OD⊥AC于H,交AB于D,求证:∠OCA=∠BCD;
(3)如图2,过C作CE⊥AC,且CE=AC,连结BE,当C在线段OB上运动时,求∠EBC的度数.

查看答案和解析>>

科目: 来源: 题型:解答题

18.解方程
(1)3(3-5x)-4(5+2x)=6(1-3x)-12
(2)y-$\frac{y-1}{2}$=2-$\frac{y+2}{6}$.

查看答案和解析>>

科目: 来源: 题型:解答题

17.(1)计算:-22÷0.5-(1-$\frac{1}{3}$×0.6)÷(-2)2
(2)已知B=4x2-5x-6,A-B=-7x2-10x+12,试求A+B的值.
(3)先化简,再求值:5a2b+3(1-2ab2)-2(a2b-4ab2+1),其中a=-1,b=$\frac{1}{3}$.

查看答案和解析>>

科目: 来源: 题型:解答题

16.如图,抛物线L:y=-$\frac{1}{2}$(x-t)(x-t+4)(常数t>0)与x轴从左到右的交点为B,A,过线段OA的中点M作MP⊥x轴,交双曲线y=$\frac{k}{x}$(k>0,x>0)于点P,且OA•MP=12.
(1)求k的值;
(2)当t=1时,求AB长,并求直线MP与L对称轴之间的距离;
(3)把L在直线MP左侧部分的图象(含与直线MP的交点)记为G,用t表示图象G最高点的坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.
(1)求证:DE是⊙O的切线;
(2)若DE=6cm,AE=3cm,求⊙O的半径.
(3)在(2)的条件下,直接写出tan∠CAB的值.

查看答案和解析>>

科目: 来源: 题型:解答题

14.(1)解方程:$\frac{x-1}{3}$=1-$\frac{3x+2}{5}$
(2)先化简,再求值:$\frac{1}{3}$(9ab2-3)+(7a2b-2)+2(ab2+1)-2a2b,其中a、b满足(a+2)2+|b-3|=0.

查看答案和解析>>

同步练习册答案