1.阅读下列材料:因为
$\frac{1}{1×3}$=$\frac{1}{2}×(1-\frac{1}{3})$,
$\frac{1}{3×5}$=$\frac{1}{2}×(\frac{1}{3}-\frac{1}{5})$,
$\frac{1}{5×7}$=$\frac{1}{2}×(\frac{1}{5}-\frac{1}{7})$,
$\frac{1}{2013×2015}$=$\frac{1}{2}×(\frac{1}{2013}-\frac{1}{2015})$,…
所以$\frac{1}{1×3}$+$\frac{1}{3×5}$+$\frac{1}{5×7}$+…+$\frac{1}{2013×2015}$=$\frac{1}{2}×(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+…+\frac{1}{2013}-\frac{1}{2015})$.
解答下列问题:
(1)在和式$\frac{1}{1×3}$+$\frac{1}{3×5}$+$\frac{1}{5×7}$+…中,第五项为$\frac{1}{9×11}$,第n项为$\frac{1}{(2n-1)(2n+1)}$.
(2)利用上述结论计算:
$\frac{1}{x(x+2)}$+$\frac{1}{(x+2)(x+4)}$+$\frac{1}{(x+4)(x+6)}$+…+$\frac{1}{(x+2014)(x+2016)}$.