相关习题
 0  293755  293763  293769  293773  293779  293781  293785  293791  293793  293799  293805  293809  293811  293815  293821  293823  293829  293833  293835  293839  293841  293845  293847  293849  293850  293851  293853  293854  293855  293857  293859  293863  293865  293869  293871  293875  293881  293883  293889  293893  293895  293899  293905  293911  293913  293919  293923  293925  293931  293935  293941  293949  366461 

科目: 来源: 题型:解答题

10.先化简,再求值:$\frac{1}{x+1}$-$\frac{3-x}{{x}^{2}-6x+9}$$÷\frac{{x}^{2}+x}{x-3}$,其中x=-$\frac{3}{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

9.设点Q到图形W上每一个点的距离的最小值称为点Q到图形W的距离.例如正方形ABCD满足A(1,0),B(2,0),C(2,1),D(1,1),那么点O(0,0)到正方形ABCD的距离为1.
(1)如果⊙P是以(3,4)为圆心,1为半径的圆,那么点O(0,0)到⊙P的距离为4;
(2)求点M(3,0)到直线y=2x+1的距离;
(3)如果点N(0,a)到直线y=2x+1的距离为3,求a的值.

查看答案和解析>>

科目: 来源: 题型:解答题

8.(1)(3-π)0+4sin45°-$\sqrt{8}$+|1-$\sqrt{3}$|
(2)解分式方程:$\frac{x}{x-3}$-2=$\frac{4}{x-3}$.

查看答案和解析>>

科目: 来源: 题型:解答题

7.如图,一块直径为a+b的半圆形钢板,从中挖去直径分别为a与b的两个半圆
(1)用含a、b的代数式表示剩下的钢板的周长(结果保留π)
(2)若a=15cm,b=10cm,则剩下的钢板的周长是多少厘米?(结果保留整数)

查看答案和解析>>

科目: 来源: 题型:解答题

6.如图所示,在△ABC中,F,E分别为AB,BC的中点,G,H是AC的三等分点,EH,FG的延长线交于点D,连接AD,DC.
求证:四边形ABCD是平行四边形.

查看答案和解析>>

科目: 来源: 题型:填空题

5.两个反比例函数y=$\frac{k}{x}$(k>1)和y=$\frac{1}{x}$在第一象限内的图象如图所示,点P在y=$\frac{k}{x}$(的图象上,PC⊥x轴于点C,交y=$\frac{1}{x}$的图象于点A,PD⊥y轴于点D,交y=$\frac{1}{x}$的图象于点B,BE⊥x轴于点E,当点P在y=$\frac{k}{x}$(的图象上运动时,以下结论:①BA与DC始终平行;②PA与PB始终相等;③四边形PAOB的面积不会发生变化;④△OBA的面积等于四边形
ACEB的面积.其中一定正确的是①③④(填写序号).

查看答案和解析>>

科目: 来源: 题型:解答题

4.(1)计算:($\frac{1}{2}$)-2-6sin30°-($\frac{1}{\sqrt{7}-\sqrt{5}}$)0+$\sqrt{2}$+|$\sqrt{2}$-$\sqrt{3}$|
(2)化简:($\frac{x+2}{{x}^{2}-2x}$-$\frac{x-1}{{x}^{2}-4x+4}$)÷$\frac{x-4}{x}$,然后请自选一个你喜欢的x值,再求原式的值.

查看答案和解析>>

科目: 来源: 题型:解答题

3.如图,在菱形ABCD中,对角线AC、BD相交于点O,已知AC=6,BD=8.求菱形ABCD的面积.

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图1,抛物线y=ax2+bx+3(a≠0)与x轴交于点A、点B(点A在点B左侧),与y轴交于点C,点D为抛物线的顶点,已知点A、点B的坐标分别为A(-1,0)、B(3,0).
(1)求抛物线的解析式;
(2)在直线BC上方的抛物线上找一点P,使△PBC的面积最大,求P点的坐标;
(3)如图2,连接BD、CD,抛物线的对称轴与x轴交于点E,过抛物线上一点M作MN⊥CD,交直线CD于点N,求当∠CMN=∠BDE时点M的坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

1.如图,在△ABC中,已知CA=CB=5,BA=6,点E是线段AB上的动点(不与端点重合),点F是线段AC上的动点,连接CE、EF,若在点E、点F的运动过程中,始终保证∠CEF=∠B.
(1)求证:∠AEF=∠BCE;
(2)当以点C为圆心,以CF为半径的圆与AB相切时,求BE的长;
(3)探究:在点E、F的运动过程中,△CEF可能为等腰三角形吗?若能,求出BE的长;若不能,请说明理由.

查看答案和解析>>

同步练习册答案