相关习题
 0  295215  295223  295229  295233  295239  295241  295245  295251  295253  295259  295265  295269  295271  295275  295281  295283  295289  295293  295295  295299  295301  295305  295307  295309  295310  295311  295313  295314  295315  295317  295319  295323  295325  295329  295331  295335  295341  295343  295349  295353  295355  295359  295365  295371  295373  295379  295383  295385  295391  295395  295401  295409  366461 

科目: 来源: 题型:解答题

18.明明和刚刚是一对QQ好友,他们相约在周末到平遥古城游玩,明明家在距平遥180公里的忻州,刚刚家在距平遥150公里的临汾,明明准备让爸爸开车送他,刚刚计划乘坐大巴.已知明明爸爸开车的平均速度是大巴平均速度的1.5倍,这样刚刚必须比明明早出发半小时他们才能同时到达.
(1)请问,明明爸爸开车的平均速度是多少公里/小时?
(2)他们在平遥游玩结束后,刚刚仍坐大巴返回,当刚刚出发20分钟后,明明发现刚刚的手机落在了他们车上,于是马上开车追赶,请问,明明爸爸需开车行驶多少公里才能追上刚刚?

查看答案和解析>>

科目: 来源: 题型:解答题

17.操作与发现
(1)将这两张三角形纸片按如图(2)摆放,连接BD,他们发观AC⊥BD,请证明这个结论;
操作与探究
(2)在图(2)中,将△A′C′D纸片沿射线AC的方向平移,连接BC′,BA′,在平移的过程中:
①如图(3),当BA′与C′D平行时判断四边形A′BC′D的形状,说明理由并求出此时△A′C′D平移的距离;
②当BD经过点C时.直接写出△A′C′D平移的距离.
操作与实践
(3)请你参照以上操作过程,利用图(1)中的两张三角形纸片,拼摆出新的图形,在图(4)中画出图形,标明字母,说明构图方法,并直接写出所要探究的问题,不必解答.

查看答案和解析>>

科目: 来源: 题型:解答题

16.如图,反比例函数$y=\frac{k}{x}$与y=mx交于A,B两点,设点A、B的坐标分别为A(x1,y1),B(x2,y2),S=|x1y1|,且$\frac{3}{s-1}=\frac{4}{s}$,
(1)求k的值;
(2)当m变化时,代数式$\frac{({m}^{2}-1){x}_{1}{y}_{2}}{(m+1)^{2}}+\frac{2{x}_{2}{y}_{1}}{m+1}$是否为一个固定的值?若是,求出其值,若不是,请说理由;
(3)点C在y轴上,点D的坐标是(-1,$\frac{3}{2}$),若将菱形ACOD沿x轴负方向平移m个单位,在平移过程中,若双曲线与菱形的边AD始终有交点,请直接写出m的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

15.如图,将长方形ABCD沿直线EF折叠,使顶点C恰好落在顶点A处,已知AB=4cm,AD=8cm,则折痕EF的长为(  )
A.5cmB.$2\sqrt{5}$cmC.2$\sqrt{3}$cmD.$3\sqrt{5}$cm

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知:△ABC是等腰三角形,亲底边是BC,点D在线段AB上,E是直线BC上一点,且∠DEC=∠DCE,若∠A=60°(如图1)
(1)求证:EB=AD;
(2)若将(1)中的“点D在线段AB上”改为“点D在线段BA的延长线上”,其它条件不变(如图2),(1)的结论是否成立,并说明理由;
(3)若将(1)中的“若∠A=60°”改为“若∠A=90°”,其它条件不变,则$\frac{EB}{AD}$的值是多少?(直接写出结论,不要求写解答过程)

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知△ABC中,D为AB边上任意一点,DF∥AC交BC于F,AE∥BC,∠CDE=∠ABC=∠ACB=α.
(1)如图1,当α=60°时,求证:△DCE是等边三角形.
(2)如图2.当α=45°时,求证:①$\frac{CD}{DE}$=$\sqrt{2}$;②CE⊥DE.
(3)如图3,当α为任意锐角时,请直接写出线段CE与DE的数量关系(用α表示)

查看答案和解析>>

科目: 来源: 题型:解答题

12.如图,直线y=ax+b(a≠0)与双曲线y=$\frac{k}{x}$(k≠0)交于一、三象限内的A,B两点与x轴交于点C,点A的坐标为(2,m),点B的坐标为(n,-2),tan∠BOC=$\frac{2}{5}$.
(1)求该反比例函数和一次函数的解析式.
(2)点E为坐标轴上一点,以AE为直径的圆恰好经过点B,直接写出点E的坐标.
(3)点P(s,t)(s>2)在直线AB上运动,PM∥x轴交双曲线于M,PN∥y轴交双曲线于N,直线MN分别交x轴,y轴于F,G,求$\frac{OF}{OG}$+$\frac{3}{t}$的值.

查看答案和解析>>

科目: 来源: 题型:选择题

11.如图1,已知Rt△ABC,CA=CB,点P为AB边上的一个动点,点E、F分别是CA,CB边的中点,过点P作PD⊥CA于D,设AP=x,图中某条线段的长为y,如果表示y与x的函数关系的大致图象如图2所示,那么这条线段可能是(  )
A.PDB.PEC.PCD.PF

查看答案和解析>>

科目: 来源: 题型:解答题

10.在平面直角坐标系xOy中,对“隔离直线”给出如下定义:
点P(x,m)是图形G1上的任意一点,点Q(x,n)是图形G2上的任意一点,若存在直线l:kx+b(k≠0)满足m≤kx+b且n≥kx+b,则称直线l:y=kx+b(k≠0)是图形G1与G2的“隔离直线”.
如图1,直线l:y=-x-4是函数y=$\frac{6}{x}$(x<0)的图象与正方形OABC的一条“隔离直线”.
(1)在直线y1=-2x,y2=3x+1,y3=-x+3中,是图1函数y=$\frac{6}{x}$(x<0)的图象与正方形OABC的“隔离直线”的为y1=-2x;
请你再写出一条符合题意的不同的“隔离直线”的表达式:y=-3x;
(2)如图2,第一象限的等腰直角三角形EDF的两腰分别与坐标轴平行,直角顶点D的坐标是($\sqrt{3}$,1),⊙O的半径为2.是否存在△EDF与⊙O的“隔离直线”?若存在,求出此“隔离直线”的表达式;若不存在,请说明理由;
(3)正方形A1B1C1D1的一边在y轴上,其它三边都在y轴的右侧,点M(1,t)是此正方形的中心.若存在直线y=2x+b是函数y=x2-2x-3(0≤x≤4)的图象与正方形A1B1C1D1的“隔离直线”,请直接写出t的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

9.计算
(1)(-$\frac{1}{4}$)-2-(-2016)0+($\frac{2}{3}$)11•(-1$\frac{1}{2}$)12
(2)(3x-2)2+(-3+x)(-x-3)

查看答案和解析>>

同步练习册答案