相关习题
 0  295799  295807  295813  295817  295823  295825  295829  295835  295837  295843  295849  295853  295855  295859  295865  295867  295873  295877  295879  295883  295885  295889  295891  295893  295894  295895  295897  295898  295899  295901  295903  295907  295909  295913  295915  295919  295925  295927  295933  295937  295939  295943  295949  295955  295957  295963  295967  295969  295975  295979  295985  295993  366461 

科目: 来源: 题型:解答题

14.如图,CB的坡度为$\frac{\sqrt{3}}{3}$,坡上有一棵树AB,当太阳光线与水平线成70°沿斜坡照下时,在斜坡上的树影BC长为4米.
(1)请在虚线框内尺规作图作∠E等于已知角∠CBA(保留作图痕迹,不用写出作法);
(2)求树高AB(精确到0.1米)

查看答案和解析>>

科目: 来源: 题型:解答题

13.先化简,再求值:(a+b)2+b(a-b)-a2,其中a=$\sqrt{3}$,b=$\sqrt{6}$.

查看答案和解析>>

科目: 来源: 题型:填空题

12.甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是9.6环,方差分别是S2=0.96,S2=1.12,S2=0.56,S2=1.58.在本次射击测试中,成绩最稳定的是丙.

查看答案和解析>>

科目: 来源: 题型:解答题

11.操作与探究
综合实践课,老师把一个足够大的等腰直角三角尺AMN靠在一个正方形纸片ABCD的一侧,使边AM与AD在同
一直线上(如图1),其中∠AMN=90°,AM=MN.
(1)猜想发现
老师将三角尺AMN绕点A逆时针旋转α.如图2,当0<α<45°时,边AM,AN分别与直线BC,CD交于点E,F,连结EF.小明同学探究发现,线段EF,BE,DF满足EF=BE-DF;如图3,当45°<α<90°时,其它条件不变.
①填空:∠DAF+∠BAE=45度;
②猜想:线段EF,BE,DF三者之间的数量关系是:EF=BE+DF.
(2)证明你的猜想;
(3)拓展探究
在45°<α<90°的情形下,连结BD,分别交AM,AN于点G,H,如图4连结EH,试证明:EH⊥AN.

查看答案和解析>>

科目: 来源: 题型:选择题

10.如图,在△ABC中,AB=5,BC=3,AC=4,点E,F分别是AB,BC的中点.以下结论错误的是(  )
A.△ABC是直角三角形B.AF是△ABC的中位线
C.EF是△ABC的中位线D.△BEF的周长为6

查看答案和解析>>

科目: 来源: 题型:填空题

9.在Rt△ABC中,∠C=90°,AC=4,BC=3,
(1)AB=5;
(2)若经过点C且与边AB相切的动圆与边CB、CA分别相交于点E、F,则线段EF长度的取值范围是$\frac{12}{5}$≤EF<4.

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知抛物线l:y=ax2+bx+c(a≠0)与x轴交于点A、B(3,0)两点(点A在B的左侧),与y轴交于点C(0,3),对称轴为直线x=1,如图1.
(1)求抛物线l的解析式;
(2)将抛物线l向下平移d个单位长度,使平移后所的抛物线的顶点落在△OBC内(包括△OBC的边界),求d的取值范围;
(3)如图2,设点P是抛物线l上任意一点,点D在直线x=-3上,问是否存在这样的点P,使得△PBD是以点P为直角顶点的等腰直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

7.在平面直角坐标系xOy中,对于线段MN的“三等分变换”,给出如下定义:如图1,点P,Q为线段MN的三等分点,即MP=PQ=QN,将线段PM以点P为旋转中心顺时针旋转90°得到PM′,将线段QN以点Q为旋转中心顺时针旋转90°得到QN′,则称线段MN进行了三等分变换,其中M′,N′记为点M,N三等分变换后的对应点.
例如:如图2,线段MN,点M的坐标为(1,5),点N的坐标为(1,2),则点P的坐标为(1,4),点Q的坐标为(1,3),那么线段MN三等分变换后,可得:M′的坐标为(2,4),点N′的坐标为(0,3).

(1)若点P的坐标为(2,0),点Q的坐标为(4,0),直接写出点M′与点N′的坐标;
(2)若点Q的坐标是(0,-$\frac{\sqrt{2}}{2}$),点P在x轴正半轴上,点N′在第二象限.当线段PQ的长度为符合条件的最小整数时,求OP的长;
(3)若点Q的坐标为(0,0),点M′的坐标为(-3,-3),直接写出点P与点N的坐标;
(4)点P是以原点O为圆心,1为半径的圆上的一个定点,点P的坐标为($\frac{\sqrt{3}}{2}$,-$\frac{1}{2}$)当点N′在圆O内部或圆上时,求线段PQ的取值范围及PQ取最大值时点M′的坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

6.如图①,平行四边形纸条ABCD中,E、F分别是AD、BC的中点,请观察从图①到图②的操作过程,并按要求解答下列问题.

(1)在图①中,有多少个平行四边形(平行四边形ABCD除外),并选择其中一个给予证明;
(2)从图②中可看出,沿EF对折后,D与B重合,试问平行四边形ABCD除一般平行四边形所应有的性质外,它还具备有什么特有性质?(不必说明理由);
(3)在图②中,若再沿AF对折,要使点E与点B(或D)重合,那么平行四边形ABCD还应增加什么条件?请合情合理地说明之.

查看答案和解析>>

科目: 来源: 题型:填空题

5.若关于x的方程$\frac{x+m}{x-3}$+$\frac{3m}{3-x}$=3的解为正数,则m的取值范围是m<$\frac{9}{2}$且m$≠\frac{3}{2}$.

查看答案和解析>>

同步练习册答案