相关习题
 0  296133  296141  296147  296151  296157  296159  296163  296169  296171  296177  296183  296187  296189  296193  296199  296201  296207  296211  296213  296217  296219  296223  296225  296227  296228  296229  296231  296232  296233  296235  296237  296241  296243  296247  296249  296253  296259  296261  296267  296271  296273  296277  296283  296289  296291  296297  296301  296303  296309  296313  296319  296327  366461 

科目: 来源: 题型:填空题

5.有三辆车按A,B,C编号,甲、乙两人可任意选坐一辆车,则两人同坐C号车的概率为$\frac{1}{9}$.

查看答案和解析>>

科目: 来源: 题型:选择题

4.如图,在平面直角坐标系xOy中,点A(1,0),B(2,0),正六边形ABCDEF沿x轴正方向无滑动滚动,每旋转60°为滚动1次,那么当正六边形ABCDEF滚动2017次时,点F的坐标是(  )
A.(2017,0)B.(2017$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$)C.(2018,$\sqrt{3}$)D.(2018,0)

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知△ABC,AB=AC,D为直线BC上一点,E为直线AC上一点,AD=AE,设∠BAD=α,∠CDE=β.
(1)如图,若点D在线段BC上,点E在线段AC上.
①如果∠ABC=60°,∠ADE=70°,那么α=20°,β=10°.
②求α,β之间的关系式.
(2)是否存在不同于以上②中的α,β之间的关系式?若存在,求出这个关系式(求出一个即可);若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图,将矩形ABCD沿线段AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.
(1)求证:△AGE≌△AGD
(2)探究线段EG、GF、AF之间的数量关系,并说明理由;
(3)若AG=6,EG=2$\sqrt{5}$,求BE的长.

查看答案和解析>>

科目: 来源: 题型:解答题

1.(1)计算:(-1)2017-(2-$\sqrt{3}$)0+$\sqrt{25}$;
(2)化简:(x-y)2-(x-2y)(x+y).

查看答案和解析>>

科目: 来源: 题型:解答题

20.如图,在平面直角坐标系中,矩形OABC的边OA=2,OC=6,在OC上取点D将△AOD沿AD翻折,使O点落在AB边上的E点处,将一个足够大的直角三角板的顶点P从D点出发沿线段DA→AB移动,且一直角边始终经过点D,另一直角边所在直线与直线DE,BC分别交于点M,N.
(1)填空:经过A,B,D三点的抛物线的解析式是y=-$\frac{1}{4}$x2-$\frac{3}{2}$x-2;
(2)已知点F在(1)中的抛物线的对称轴上,求点F到点B,D的距离之差的最大值;
(3)如图1,当点P在线段DA上移动时,是否存在这样的点M,使△CMN为等腰三角形?若存在,请求出M点坐标;若不存在,请说明理由;
(4)如图2,当点P在线段AB上移动时,设P点坐标为(x,-2),记△DBN的面积为S,请直接写出S与x之间的函数关系式,并求出S随x增大而增大时所对应的自变量x的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

19.“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:
请结合图表完成下列各题:
(1)①表中a的值为12,中位数在第3组;
②频数分布直方图补充完整;
(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?
(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.
组别成绩x分频数(人数)
第1组50≤x<606
第2组60≤x<708
第3组70≤x<8014
第4组80≤x<90a
第5组90≤x<10010

查看答案和解析>>

科目: 来源: 题型:解答题

18.如图,直线y=-x+3与x轴交于点C,与y轴交于点B,抛物线y=ax2+$\frac{1}{2}$x+c经过B、C两点,点E是直线BC上方抛物线上的一动点.

(1)求抛物线的解析式;
(2)过点E作y轴的平行线交直线BC于点M、交x轴于点F,当S△BEC=$\frac{3}{2}$时,请求出点E和点M的坐标;
(3)在(2)的条件下,当E点的横坐标为1时,在EM上是否存在点N,使得△CMN和△CBE相似?如果存在,请直接写出点N的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

17.在矩形ABCD中,AD=2AB=4,E是AD的中点,一块足够大的三角板的直角顶点与点E重合,将三角板绕点E旋转,三角板的两直角边分别交AB,BC(或它们的延长线)于点M,N.

(1)观察图1,直接写出∠AEM与∠BNE的关系是∠AEM+∠BNE=90°;(不用证明)
(2)如图1,当M、N都分别在AB、BC上时,可探究出BN与AM的关系为:BN⊥AM,BN-AM=2;(不用证明)
(3)如图2,当M、N都分别在AB、BC的延长线上时,(2)中BN与AM的关系式是否仍然成立?若成立,请说明理由:若不成立,写出你认为成立的结论,并说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知关于x的方程x2-(2k+3)x+k2=0有两个不相等的实数根x1,x2
(1)求k的取值范围;
(2)若两不相等的实数根满足x1x2-x12-x22=-9,求实数k的值.

查看答案和解析>>

同步练习册答案