相关习题
 0  296236  296244  296250  296254  296260  296262  296266  296272  296274  296280  296286  296290  296292  296296  296302  296304  296310  296314  296316  296320  296322  296326  296328  296330  296331  296332  296334  296335  296336  296338  296340  296344  296346  296350  296352  296356  296362  296364  296370  296374  296376  296380  296386  296392  296394  296400  296404  296406  296412  296416  296422  296430  366461 

科目: 来源: 题型:解答题

8.现代互联网技术的广泛应用,催生了快递行业的高速发展,小明计划给朋友快递一部分物品,经了解有甲乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.
(1)根据题意,填写下表:
    重量(千克)
费用(元)
0.5134
甲公司11225267
乙公司11195167
(2)请分别写出甲乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;
(3)小明应选择哪家快递公司更省钱?

查看答案和解析>>

科目: 来源: 题型:填空题

7.三国时期吴国赵爽创造了“勾股圆方图”(如图)证明了勾股定理,在这幅“勾股圆方图”中,大正方形ABCD是由4个全等的直角三角形再加上中间的一个小正方形EFGH组成的,已知小正方形的边长是2,每个直角三角形的短直角边长是6,则大正方形ABCD的面积是100.

查看答案和解析>>

科目: 来源: 题型:填空题

6.小明在他家里的时钟上安装了一个电脑软件,他设定当钟声在n点钟响起后,下一次则在(3n-1)小时后响起,例如钟声第一次在3点钟响起,那么第2次在(3×3-1=8)小时后,也就是11点响起,第3次在(3×11-1=32)小时后,即7点响起,以此类推…;现在第1次钟声响起时为2点钟,那么第3次响起时为3点,第2017次响起时为11点(如图钟表,时间为12小时制).

查看答案和解析>>

科目: 来源: 题型:解答题

5.如图,在△ABC中,AB=AC,AD是BC边的中线,过点A作BC的平行线,过点B作AD的平行线,两线交于点E.
(1)求证:四边形ADBE是矩形;
(2)连接DE,交AB于点O,若BC=8,AO=$\frac{5}{2}$,求cos∠AED的值.

查看答案和解析>>

科目: 来源: 题型:解答题

4.小明所在的学校为加强学生的体育锻炼,准备从某体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个篮球和3个足球共需600元;若购买5个篮球和2个足球共需950元.
(1)每个篮球和足球各需多少元?
(2)根据学校的实际情况,需从该商店一次性购买篮球和足球共60个,实际购买中得知:在此商店购买足球和篮球的总个数超过50时,在此商店购买的篮球打八折出售(足球仍按原价出售).若该校此次用于买篮球和足球的总费用少于6800元,那么最多可以购买多少个篮球?

查看答案和解析>>

科目: 来源: 题型:解答题

3.如图1是一种折叠式可凋节钓鱼竿支架的示意图,AE是地插,用来将支架固定在地面上,支架AB可绕A点前后转动,用来调节AB与地面的夹角,支架CD可绕支点C前后转动,用来调节CD与AB的夹角,支架CD带有伸缩调节长度的功能.
(1)若支架CD与地面垂直,钓鱼竿DB与地面AF平行,AC=30cm,BC=60cm,CD=40cm,则钓鱼竿BD距地面的高度为60cm;
(2)如图2,保持(1)中支架AB与地面的夹角不变,凋节支架CD与AB的夹角,使得∠DCB=90°,若要使钓鱼竿DB与地面AF仍然保持平行,则支架CD的长度应该调节为多少?(结果保留根号)

查看答案和解析>>

科目: 来源: 题型:解答题

2.九年级(1)班数学兴趣小组经过市场调查整理出某种商品在第x天(1≤x≤90,且x为整数)的售价与销售的相关信息如图,已知商品的进价为30元/件,设该商品的售价为y(单位:元/件),每天的销售量为p(单位:件),每天的销售利润为W(单位:元).
时间x(天)1306090
每天销售量 p(件)1981408020
(1)售价y(元)与时间x(天)之间的函数关系式是$y=\left\{\begin{array}{l}x+40({1≤x≤50,且x为整数})\\ 90({50≤x≤90,且x为整数})\end{array}\right.$;
(2)求W与x的函数关系式;
(3)销售该商品第几天时,当天的销售利润最大?并求出最大利润.

查看答案和解析>>

科目: 来源: 题型:解答题

1.麻城市思源实验学校自从开展“高效课堂”模式以来,在课堂上进行当堂检测效果很好.每节课40分钟教学,假设老师用于精讲的时间x(单位:分钟)与学生学习收益量y的关系如图1所示,学生用于当堂检测的时间x(单位:分钟)与学生学习收益y的关系如图2所示(其中OA是抛物线的一部分,A为抛物线的顶点),且用于当堂检测的时间不超过用于精讲的时间.
(1)求老师精讲时的学生学习收益量y与用于精讲的时间x之间的函数关系式;
(2)求学生当堂检测的学习收益量y与用于当堂检测的时间x的函数关系式;
(3)问此“高效课堂”模式如何分配精讲和当堂检测的时间,才能使学生在这40分钟的学习收益总量最大?

查看答案和解析>>

科目: 来源: 题型:解答题

20.某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABCD、线段CD分别表示该产品每千克生产成本y1(单位:元)销售价y2(单位:元)与产量x(单位:kg)之间的函数关系.
(1)求线段AB所表示的y1与x之间的函数表达式.
(2)当该产品产量为多少时,获得的利润最大?最大利润是多少?

查看答案和解析>>

科目: 来源: 题型:解答题

19.邻边不相等的平行四边形纸片,减去一个菱形,余下一个四边形,称为第一次操作,在余下的四边形纸片中再剪去一个菱形,余下一个四边形,称为第二次操作,…依此类推,若第n次余下的四边形是菱形,则称原平行四边形为n阶准菱形,如图1,平行四边形ABCD中,若AB=1,BC=2,则平行四边形ABCD为1阶准菱形.
(1)理解与判断:
①邻边长分别为1和3的平行四边形是2阶准菱形.
②如图2,把平行四边形ABCD沿BE折叠(点E在AD上),使点A落在BC边上的点F,得到四边形ABFE,四边形ABFE的形状一定是菱形.若AB=2,AD=3,则图2中的平行四边形ABCD是2阶准菱形.
(2)操作、探究、计算:
①已知某平行四边形的边长分别为2,a(a>2)且是3阶准菱形,请画出平行四边形ABCD及裁剪线的所有可能示意图,并在图形下方写出a的值.
②已知平行四边形ABCD是一个2017阶准菱形,其邻边长分别为1,m(1<m<2),请直接写出m的最大值是2018.

查看答案和解析>>

同步练习册答案