相关习题
 0  296254  296262  296268  296272  296278  296280  296284  296290  296292  296298  296304  296308  296310  296314  296320  296322  296328  296332  296334  296338  296340  296344  296346  296348  296349  296350  296352  296353  296354  296356  296358  296362  296364  296368  296370  296374  296380  296382  296388  296392  296394  296398  296404  296410  296412  296418  296422  296424  296430  296434  296440  296448  366461 

科目: 来源: 题型:解答题

8.交通工程学理论把在单向道路上行驶的汽车看成连续的流体,并用流量、速度、密度三个概念描述车流的基本特征.其中流量q(辆/小时)指单位时间内通过道路指定断面的车辆数;速度v(千米/小时)指通过道路指定断面的车辆速度;密度k(辆/千米)指通过道路指定断面单位长度内的车辆数.
为配合大数据治堵行动,测得某路段流量q与速度v之间关系的部分数据如下表:
速度v(千米/小时)51020324048
流量q(辆/小时)55010001600179216001152
(1)根据上表信息,下列三个函数关系式中,刻画q,v关系最准确的是③(只填上正确答案的序号)
①q=90v+100;②q=$\frac{32000}{v}$;③q=-2v2+120v.
(2)请利用(1)中选取的函数关系式分析,当该路段的车流速度为多少时,流量达到最大?最大流量是多少?
(3)已知q,v,k满足q=vk,请结合(1)中选取的函数关系式继续解决下列问题.
①市交通运行监控平台显示,当12≤v<18时道路出现轻度拥堵.试分析当车流密度k在什么范围时,该路段将出现轻度拥堵;
②在理想状态下,假设前后两车车头之间的距离d(米)均相等,求流量q最大时d的值.

查看答案和解析>>

科目: 来源: 题型:解答题

7.工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)
(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为12dm2时,裁掉的正方形边长多大?
(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?

查看答案和解析>>

科目: 来源: 题型:解答题

6.对于实数x、y规定一种运算“x△y=ax+by(a、b是常数)”,已知2△3=11,5△(-3)=10
(1)求a、b的值;
(2)计算(-2)△$\frac{3}{5}$.

查看答案和解析>>

科目: 来源: 题型:选择题

5.若抛物线y=x2-4x+2-t(t为实数)在0<x<$\frac{5}{2}$的范围内与x轴有公共点,则t的取值范围为(  )
A.-2<t<2B.-2≤t<2C.-$\frac{7}{4}$<t<2D.t≥-2

查看答案和解析>>

科目: 来源: 题型:解答题

4.某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50m.设饲养室长为x(m),占地面积为y(m2).
(1)如图1,问饲养室长x为多少时,占地面积y最大?
(2)如图2,现要求在图中所示位置留2m宽的门,且仍使饲养室的占地面积最大,小敏说:“只要饲养室长比(1)中的长多2m就行了.”请你通过计算,判断小敏的说法是否正确.

查看答案和解析>>

科目: 来源: 题型:解答题

3.校园安全与每个师生、家长和社会有着切身的关系.某校教学楼共五层,设有左、右两个楼梯口,通常在放学时,若持续不正常,会导致等待通过的人较多,发生拥堵,从而出现不安全因素.通过观察发现位于教学楼二、三楼的七年级学生从放学时刻起,经过单个楼梯口等待人数按每分钟12人递增,6分钟后经过单个楼梯口等待人数按每分钟12人递减;位于四、五楼的八年级学生从放学时刻起,经过单个楼梯口等待人数y2与时间为t(分)满足关系式y2=-4t2+48t-96(0≤t≤12).若在单个楼梯口等待人数超过80人,就会出现安全隐患.
(1)试写出七年级学生在单个楼梯口等待的人数y1(人)和从放学时刻起的时间t(分)之间的函数关系式,并指出t的取值范围.
(2)若七、八年级学生同时放学,试计算等待人数超过80人所持续的时间.
(3)为了避免出现安全隐患,该校采取让七年级学生提前放学措施,要使单个楼梯口等待人数不超过80人,则七年级学生至少比八年级提前几分钟放学?

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y=$\frac{k}{x}$(k>0,x>0)的图象上,点D的坐标为($\sqrt{5}$,2).
(1)求k的值;
(2)若将菱形ABCD沿x轴正方向平移,当菱形的一个顶点恰好落在函数y=$\frac{k}{x}$(k>0,x>0)的图象上时,求菱形ABCD平移的距离.

查看答案和解析>>

科目: 来源: 题型:解答题

1.如图,点B(3,3)在双曲线y=$\frac{k}{x}$(x>0)上,点C在双曲线y=-$\frac{4}{x}$(x<0)上,点A在x轴的正半轴上,且△ABC是以BC为斜边的等腰直角三角形.
(1)填空:k=9;
(2)求点A的坐标;
(3)若点D是x轴上一点,且以点D、O、C为顶点的三角形是等腰三角形,请直接写出点D的坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

20.某公司生产一种新型生物医药产品,生产成本为2万元/吨,每月生产能力为12吨,且生产出的产品都能销售出去.这种产品部分内销部分外销(出口),内销与外销的单价(单位:万元/吨)与销量的关系分别如图1,图2.

(1)如果该公司内销数量为x(单位:吨),内、外销单价分别为y1,y2,求y1,y2关于x的函数解析式;
(2)如果该公司内销数量为x(单位:吨),求内销获得的毛利润s1关于x的函数解析式;
(3)请设计一种销售方案,使该公司本月能获得最大毛利润,并求出毛利润的最大值.(毛利润=销售收入-生产成本).

查看答案和解析>>

科目: 来源: 题型:解答题

19.(1)计算:(-1)5+15×3-2-$\frac{{\sqrt{12}×\sqrt{2}}}{{\sqrt{6}}}$;  
(2)求不等式组:$\left\{\begin{array}{l}1-3x<6\\ \frac{x+1}{2}>x-1\end{array}$的所有整数解.

查看答案和解析>>

同步练习册答案