相关习题
 0  296341  296349  296355  296359  296365  296367  296371  296377  296379  296385  296391  296395  296397  296401  296407  296409  296415  296419  296421  296425  296427  296431  296433  296435  296436  296437  296439  296440  296441  296443  296445  296449  296451  296455  296457  296461  296467  296469  296475  296479  296481  296485  296491  296497  296499  296505  296509  296511  296517  296521  296527  296535  366461 

科目: 来源: 题型:解答题

10.如图,抛物线y=-x2+bx+c与直线AB交于A(-4,-4),B(0,4)两点,直线AC:y=-$\frac{1}{2}$x-6交y轴于点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G.
(1)求抛物线y=-x2+bx+c的表达式;
(2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标;
(3)①在y轴上存在一点H,连接EH,HF,当点E运动到什么位置时,以A,E,F,H为顶点的四边形是矩形?求出此时点E,H的坐标;
②在①的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上一动点,求$\frac{1}{2}$AM+CM它的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

9.温州市政府计划投资百亿元开发瓯江口新区,打造出一个“东方时尚岛、海上新温州”.为了解温州市民对瓯江口新区的关注情况,某学校数学兴趣小组随机采访部分温州市民,对采访情况制作了统计图表的一部分如下:
关注情况频数频率
A.高度关注m0.1
B.一般关注1000.5
C.不关注30n
D.不知道500.25
(1)根据上述统计表可得此次采访的人数为200人;m=20,n=0.15;
(2)根据以上信息补全条形统计图;
(3)根据上述采访结果,估计25000名温州市民中高度关注瓯江口新区的市民约2500人.

查看答案和解析>>

科目: 来源: 题型:选择题

8.四张完全相同的卡片上,分别画有圆、正方形、等边三角形和线段,现从中随机抽取两张,卡片上画的恰好都是中心对称图形的概率为(  )
A.1B.$\frac{3}{4}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目: 来源: 题型:选择题

7.若一次函数y=(a+1)x+a的图象过第一、三、四象限,则二次函数y=ax2-ax(  )
A.有最大值$\frac{a}{4}$B.有最大值-$\frac{a}{4}$C.有最小值$\frac{a}{4}$D.有最小值-$\frac{a}{4}$

查看答案和解析>>

科目: 来源: 题型:选择题

6.从-4,-3,1,3,4这五个数中,随机抽取一个数,记为m,若m使得关于x,y的二元一次方程组$\left\{\begin{array}{l}{2x+y=2}\\{mx-2y=3}\end{array}\right.$有解,且使关于x的分式方程$\frac{1-m}{x-1}$-1=$\frac{2}{1-x}$有正数解,那么这五个数中所有满足条件的m的值之和是(  )
A.1B.2C.-1D.-2

查看答案和解析>>

科目: 来源: 题型:选择题

5.在学习解直角三角形以后,重庆八中数学兴趣小组测量了旗杆的高度.如图,某一时刻,旗杆AB的影子一部分落在平台上的影长BC为6米,落在斜坡上的影长CD为4米,AB⊥BC,同一时刻,光线与旗杆的夹角为37°,斜坡的坡角为30°,旗杆的高度AB约为(  )米.(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,$\sqrt{3}$≈1.73)
A.10.61B.10.52C.9.87D.9.37

查看答案和解析>>

科目: 来源: 题型:解答题

4.如图,在Rt△ABC中,∠ACB=90°,AC=BC,点D是AC延长线上一点,连结BD.将△BCD绕着点C顺时针旋转90°得到△ACE,延长AE交BD于F.

(1)依据题意补全图1;
(2)判断AE与BD的位置关系,说明理由;
(3)连结CF,求∠CFA的度数.
要想求出∠CFA的度数,小明经过思考,得到了以下几种想法:
想法1:在AF上取一点G,使得AG=BF,需要先证明△AGC≌△BFC,然后再证明△CFG是等腰直角三角形.
想法2:取AB的中点O,连接OC,OF,只需要利用圆的性质证明∠CFA=∠ABC.
想法3:将△ACF绕点C逆时针旋转90°,得到△BCG,只需证明△FCG是等腰直角三角形.
请你参考上面的想法,帮助小明求解.(写出一种方法即可)

查看答案和解析>>

科目: 来源: 题型:解答题

3.在平面直角坐标系xOy中,已知点M(1,1),N(1,-1),经过某点且平行于OM、ON或MN的直线,叫该点关于△OMN的“关联线”.
例如,如图1,点P(3,0)关于△OMN的“关联线”是:y=x+3,y=-x+3,x=3.
(1)在以下3条线中,是点(4,3)关于△OMN的“关联线”(填出所有正确的序号;
①x=4;②y=-x-5;③y=x-1.
(2)如图2,抛物线y=$\frac{1}{4}$(x-m)2+n经过点A(4,4),顶点B在第一象限,且B点有一条关于△OMN的“关联线”是y=-x+5,求此抛物线的表达式;
(3)在(2)的条件下,过点A作AC⊥x轴于点C,点E是线段AC上除点C外的任意一点,连接OE,将△OCE沿着OE折叠,点C落在点C′的位置,当点C′在B点关于△OMN的平行于MN的“关联线”上时,满足(2)中条件的抛物线沿对称轴向下平移多少距离,其顶点落在OE上?

查看答案和解析>>

科目: 来源: 题型:解答题

2.在平面直角坐标系xOy中,抛物线y=mx2-4mx+4m+4(m≠0)的顶点为P.P,M两点关于原点O成中心对称.
(1)求点P,M的坐标;
(2)若该抛物线经过原点,求抛物线的表达式;
(3)在(2)的条件下,将抛物线沿x轴翻折,翻折后的图象在0≤x≤5的部分记为图象H,点N为抛物线对称轴上的一个动点,经过M,N的直线与图象H有两个公共点,结合图象求出点N的纵坐标n的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

1.“直角”在初中几何学习中无处不在.
如图,已知∠AOB,请仿照小丽的方式,再用两种不同的方法判断∠AOB是否为直角(仅限用直尺和圆规).

查看答案和解析>>

同步练习册答案