相关习题
 0  296406  296414  296420  296424  296430  296432  296436  296442  296444  296450  296456  296460  296462  296466  296472  296474  296480  296484  296486  296490  296492  296496  296498  296500  296501  296502  296504  296505  296506  296508  296510  296514  296516  296520  296522  296526  296532  296534  296540  296544  296546  296550  296556  296562  296564  296570  296574  296576  296582  296586  296592  296600  366461 

科目: 来源: 题型:解答题

15.(1)问题发现
如图1,△ACB和△DCE均为等腰直角三角形,∠ACB=90°,B,C,D在一条直线上.
填空:线段AD,BE之间的关系为AD=BE,AD⊥BE.
(2)拓展探究
如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,请判断AD,BE的关系,并说明理由.
(3)解决问题
如图3,线段PA=3,点B是线段PA外一点,PB=5,连接AB,将AB绕点A逆时针旋转90°得到线段AC,随着点B的位置的变化,直接写出PC的范围.

查看答案和解析>>

科目: 来源: 题型:解答题

14.为改善洛阳的公共交通状况,洛阳市开始建设地铁系统,如图为某地地铁出站口的示意图,为提高某一段台阶的安全性,决定进行改善,把倾角由45°减至30°,已知原台阶坡面AB的长为5m(BC所在平面为水平面).(结果精确到0.1m,参考数据:$\sqrt{2}$≈1.41,$\sqrt{3}$≈1.73)
(1)改善后的台阶坡面会加长多少?
(2)改善后的台阶多占多长一段水平地面?

查看答案和解析>>

科目: 来源: 题型:填空题

13.如图矩形ABCD中,AD=5,AB=6,点E为DC上一个动点,把△ADE沿AE折叠,点D的对应点为F,当△DFC是等腰三角形时,DE的长为$\frac{5}{3}$或$\frac{15}{4}$或6.

查看答案和解析>>

科目: 来源: 题型:选择题

12.如图,在△ABC中,∠C=90°,AB=8,AC=4,以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F,再分别以点E、F为圆心,大于EF长为半径画弧,两弧交于点G,作射线AG,交BC于点D,则D到AB的距离为(  )
A.2B.4C.$\frac{4\sqrt{3}}{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目: 来源: 题型:填空题

11.在Rt△ABC中,∠C=90°,∠A=30°,AB=6,点D,E分别是BC,AB上的动点,将△BDE沿直线DE翻折,点B的对应点B′恰好落在AC上,若△AEB′是等腰三角形,那么CB′的值是3,3$\sqrt{2}$-3,0.

查看答案和解析>>

科目: 来源: 题型:解答题

10.如图1,某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的南岸边点A处,测得河的北岸边点B在其北偏东45°方向,然后向西走50m到达C点,测得点B在点C的北偏东60°方向,如图2,求出这段河的宽(结果精确到1m,备用数据$\sqrt{2}$≈1.41,$\sqrt{3}$≈1.73).

查看答案和解析>>

科目: 来源: 题型:解答题

9.如图,矩形ABCD的对角线AC与BD相交于点O,延长CB至点E,使BE=BC,连按AE.
(1)求证:四边形ADBE是平行四边形;
(2)若AB=4,OB=$\frac{5}{2}$,求四边形ADBE的周长.

查看答案和解析>>

科目: 来源: 题型:填空题

8.如图,点E在菱形ABCD边上,AE=1,过E作AC的垂线EF,交AD于点M,交CD的延长线于点F,DF=2,∠B=60°,点P是AC上的动点,则PM+PF的最小值3$\sqrt{3}$.

查看答案和解析>>

科目: 来源: 题型:填空题

7.如图,在菱形ABCD中,∠ABC=40°,BC的垂直平分线EF交对角线BD于点F.连接AF,则∠DAF的度数为120°.

查看答案和解析>>

科目: 来源: 题型:解答题

6.通过调查,一段时间内,C、D两城生产化肥供给A、B两乡,其中A、B两乡需求总量y(吨)与化肥市场价格x(百元/吨)(3≤x≤8),存在下列关系:
x4567
y550500450400
C、D两城生产总量Z(吨)与化肥市价x(百元/吨)成正比例函数:Z=100x,已知C城生产总量为240吨,A乡需求量为200吨.如果需求量y与生产量Z相等,此时处于平衡状态.
(1)请通过描点画图,探究y与x之间的函数关系;
(2)某运输公司承担化肥运输任务,已知从C城运往A、B两乡运费分别为20元/t和15元/t;从D城运往A、B两乡费用分别未能25元/t和24元/t,当市场处于平衡状态时,如何调运可使总费用最少?并求出最小费用是多少元?

查看答案和解析>>

同步练习册答案