相关习题
 0  302434  302442  302448  302452  302458  302460  302464  302470  302472  302478  302484  302488  302490  302494  302500  302502  302508  302512  302514  302518  302520  302524  302526  302528  302529  302530  302532  302533  302534  302536  302538  302542  302544  302548  302550  302554  302560  302562  302568  302572  302574  302578  302584  302590  302592  302598  302602  302604  302610  302614  302620  302628  366461 

科目: 来源: 题型:解答题

6.如图,四边形ABCD中,AC⊥BD于O,点E,F,G,H分别为AD,AB,BC,CD的中点.
(1)求证:四边形EFGH是矩形;
(2)若AC=BD,求证:四边形EFGH是正方形.

查看答案和解析>>

科目: 来源: 题型:解答题

5.如图①,正方形AEFG的边长为1,正方形ABCD的边长为3,且点F在AD上.
(1)求S△DBF
(2)把正方形AEFG绕点A按逆时针方向旋转45°得图②,求图②中的S△DBF
(3)把正方形AEFG绕点A旋转一周,在旋转的过程中,S△DBF存在最大值与最小值,请直接写出最大值$\frac{15}{2}$,最小值$\frac{3}{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

4.如图,已知Rt△ABC,∠ABC=90°,点A在y轴上,点B在x轴上,AB=10,BC=5,点C(m,3).
(1)分别求点A、B的坐标及m的值;
(2)在第一象限中,画出以原点O为位似中心,将△ABC缩小后所得的△DEF,使△DEF与△ABC的对应边之比1:2.

查看答案和解析>>

科目: 来源: 题型:解答题

3.如图,直线AB与CD相交于点O,OE⊥AB,OF⊥CD,如果∠AOC=$\frac{1}{5}$∠EOF(∠EOF指图中钝角),求∠AOC的度数.

查看答案和解析>>

科目: 来源: 题型:选择题

2.如图,在四边形ABCD中,∠B=∠C=90°,点E是AD的中点,EF⊥AD交CB于点F,DC=6,AB=8,BC=10,则线段BF的长为(  )
A.5B.$\frac{5}{2}$C.$\frac{36}{5}$D.$\frac{18}{5}$

查看答案和解析>>

科目: 来源: 题型:解答题

1.如图,在△ABC中,AD是BC边上的中线,AE⊥BC于E,AB=12,BC=10,AC=8,求DE的长.

查看答案和解析>>

科目: 来源: 题型:解答题

20.如图,在△ABC中,AC=50m,BC=40m,点A开始沿AC边向点C以2m/s的速度匀速移动,同时另一点Q由C点开始以3m/s的速度沿着CB匀速移动,几秒后,△PCQ与△ABC相似?

查看答案和解析>>

科目: 来源: 题型:解答题

19.问题背景:在△ABC中,AB、BC、AC三边的长分别为$\sqrt{5}$、$\sqrt{10}$、$\sqrt{13}$,求此三角形的面积.
小军同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示,这样不需要求△ABC的高,而借用网格就能计算它的面积.
(1)请将△ABC的面积直接填写在横线上:$\frac{7}{2}$.
(2)我们把上述求△ABC面积的方法叫做构图法,如果△ABCD的三边长分别为$\sqrt{5}$a,$\sqrt{13}$a,2$\sqrt{5}$a,请利用图2的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积.
(3)若△ABC三边的长分别为$\sqrt{9{m}^{2}+4{n}^{2}}$、$\sqrt{{m}^{2}+4{n}^{2}}$、2$\sqrt{{m}^{2}+4{n}^{2}}$(m>0,n>0,且m≠n),试运用构图法画出相应的△ABC,并求出这个三角形的面积.

查看答案和解析>>

科目: 来源: 题型:解答题

18.如图,直线y=kx+3与x轴、y轴分别交于A、B两点,$\frac{OB}{OA}$=$\frac{3}{4}$,点C是直线y=kx+3上与A、B不重合的动点,过点C的另一直线CD与y轴相交于点D,是否存在点C使△BCD与△AOB全等?若存在,求出点C的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知二次函数y=x2+bx+c的图象经过点(0,-3),(1,0).
(1)求b、c的值; 
(2)求出该二次函数图象的顶点坐标和对称轴,并在所给坐标系中画出该函数的图象;
(3)该函数的图象经过怎样的平移得到y=x2的图象?

查看答案和解析>>

同步练习册答案