相关习题
 0  303267  303275  303281  303285  303291  303293  303297  303303  303305  303311  303317  303321  303323  303327  303333  303335  303341  303345  303347  303351  303353  303357  303359  303361  303362  303363  303365  303366  303367  303369  303371  303375  303377  303381  303383  303387  303393  303395  303401  303405  303407  303411  303417  303423  303425  303431  303435  303437  303443  303447  303453  303461  366461 

科目: 来源: 题型:选择题

10.已知一次函数y=-kx+k的图象如图所示,则二次函数y=-kx2-2x+k的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:解答题

9.抛物线y=-x2+(m-1)x+m与y轴交于点(0,3).
(1)求抛物线的表达式;
(2)求抛物线的对称轴和顶点坐标; 
(3)当x取什么值时,y的值随x的增大而减小?

查看答案和解析>>

科目: 来源: 题型:解答题

8.如图,抛物线y=x2+2x-3与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.连接BC,AC,△ABC的外接圆记为⊙M,点D是⊙M与y轴的另一个交点.

(1)求出点A,B,C的坐标;
(2)求证:$\widehat{AD}=\widehat{BC}$;
(3)求⊙M的半径;
(4)如图,点P为⊙M上的一个动点,问:当点P的坐标是(-$\frac{\sqrt{10}+1}{2}$,-$\frac{\sqrt{10}+1}{2}$,以A,B,C,P为顶点的四边形有最大面积,最大面积是$\frac{3\sqrt{10}+6}{2}$(请直接填写答案在横线上)

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知二次函数y=$\frac{1}{2}$x2-x-$\frac{3}{2}$.
(1)用配方法求该二次函数的图象的顶点坐标;
(2)在右图中画出该函数图象;
(3)观察图象后判断,当x满足什么值时,y>0?

查看答案和解析>>

科目: 来源: 题型:解答题

6.如图,已知抛物线y=ax2-3ax+3与x轴交于A、B两点(A在B左边),与y轴交于C点,OB=4OA.
(1)求抛物线的解析式;
(2)直线x=t(t<0)沿轴x轴负方向平移,交射线BC于N,交抛物线于M,在平移过程中,当△BMN是以BN为腰的等腰三角形时,求t的值;
(3)设经过C点的直线l与抛物线有唯一公共点,将抛物线沿y轴向上平移n个单位交直线l于M、N(N在M点上方),交y轴于G,若MGN=90°,求n的值.

查看答案和解析>>

科目: 来源: 题型:解答题

5.数学课外选修课上李老师拿来一道问题让同学们思考.原问题:如图1,已知△ABC,在直线BC两侧,分别画出两个等腰三角形△DBC,△EBC使其面积与△ABC面积相等;(要求:所画的两个三角形一个以BC为底.一个以BC为腰);

小伟是这样思考的:我们学习过如何构造三角形与已知三角形面积相等.如图2,过点A作直线l∥BC,点D、E在直线l上时,S△ABC=S△DBC=S△EBC,如图3,直线l∥BC,直线l到BC的距离等于点A到BC的距离,点D、E、F在直线l上,则S△ABC=S△DBC=S△EBC=S△FBC.利用此方法也可以计算相关三角形面积,通过做平行线,将问题转化,从而解决问题.
(1)请你在备用图中,解决李老师提出的原问题;
参考小伟同学的想法,解答问题:
(2)如图4,由7个形状,大小完全相同的正六边形组成的网格,正六边形的顶点称为格点,若每个正六边形的边长为1,△ABC的顶点都在格点上,则△ABC的面积为3$\sqrt{3}$.
(3)在平面直角坐标系xOy中,O是坐标原点,A(-1,0),B(0,2),D是直线l:y=$\frac{1}{2}$x+3上一点,使△ABO与△ABD面积相等,则D的坐标为(2,4)(-$\frac{2}{3}$,$\frac{8}{3}$).

查看答案和解析>>

科目: 来源: 题型:解答题

4.探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?
如图甲,∠FDC、∠ECD为△ADC的两个外角,则∠A与∠FDC+∠ECD的数量关系∠FDC+∠ECD=180°+∠A.
探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?
如图乙,在△ADC中,DP、CP分别平分∠ADC和∠ACD,则∠P与∠A的数量关系∠P=90°+$\frac{1}{2}$∠A.
探究三:若将△ADC改为任意四边形ABCD呢?
已知:如图丙,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,则∠P与∠A+∠B的数量关系∠P=$\frac{1}{2}$(∠A+∠B).
探究四:若将上题中的四边形ABCD改为六边形ABCDEF呢?如图丁
则∠P与∠A+∠B+∠E+∠F的数量关系∠P=$\frac{1}{2}$(∠A+∠B+∠E+∠F)-180°.

探究五:如图,四边形ABCD中,∠F为四边形ABCD的∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的锐角,若设∠A=α,∠D=β;
(1)如图①,α+β>180°,则∠F=∠F=$\frac{1}{2}$(α+β)-90°;(用α,β表示)
(2)如图②,α+β<180°,请在图中画出∠F,且∠F=∠F=90°-$\frac{1}{2}$(α+β);(用α,β表示)
(3)一定存在∠F吗?如有,直接写出∠F的值,如不一定,直接指出α,β满足什么条件时,不存在∠F.

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知:如图,在梯形ABCD中,AD∥BC,AB⊥BC,E是上底AD的中点,P是腰AB上一动点,联结PE并延长,交射线CD于点M,作EF⊥PE,交下底BC于点F,联结MF交AD于点N,联结PF,AB=AD=4,BC=6,点A、P之间的距离为x,△PEF的面积为y.
(1)当点F与点C重合时,求x的值;
(2)求y关于x的函数解析式,并写出它的定义域;
(3)当∠CMF=∠PFE时,求△PEF的面积.

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图,在直角梯形OABC中,OA∥CB,A、B两点的坐标分别为A(15,0),B(10,12),动点P、Q分别从O、B出发,点P以每秒2个单位长度的速度沿OA向终点A运动,点Q以每秒1个单位的速度沿BC向终点C运动,当点P停止运动时,点Q也同时停止运动.线段OB、PQ相交于点D,过点D作DE∥OA,交AB于点E,连接QE并延长,交x轴于点F.设动点P、Q的运动时间为t(单位:秒)
(1)当t为何值时,四边形PABQ是等腰梯形?
(2)当t=2秒时,求梯形OFBC的面积;
(3)是否存在点P,使△PQF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

1.如图1,在矩形ABCD中,AB=3,BC=4,点E,F,G,H分别是线段AB,BC,CD,DA上的点,分别以EF,GH所在直线为对称轴,把△BEF,△DGH作轴对称变换得△MEF,△NGH,点M,N恰好在对角线AC上,且AM=CN.
(1)如图2,当BM⊥AC时,线段EF的长为$\frac{5}{2}$,连接EH,FG,四边形EFGH的形状为菱形.
(2)如图3,当EM⊥AB时,
①求线段MN的长;
②求证:NG⊥CD.
(3)当MN=1时,求四边形EFGH的面积.

查看答案和解析>>

同步练习册答案