相关习题
 0  303708  303716  303722  303726  303732  303734  303738  303744  303746  303752  303758  303762  303764  303768  303774  303776  303782  303786  303788  303792  303794  303798  303800  303802  303803  303804  303806  303807  303808  303810  303812  303816  303818  303822  303824  303828  303834  303836  303842  303846  303848  303852  303858  303864  303866  303872  303876  303878  303884  303888  303894  303902  366461 

科目: 来源: 题型:解答题

3.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a>0)的顶点为M,直线y=m与x轴平行,且与抛物线交于点A和点B,如果△AMB为等腰直角三角形,我们把抛物线上A、B两点之间部分与线段AB围成的图形称为该抛物线的准蝶形,顶点M称为碟顶,线段AB的长称为碟宽.
(1)抛物线$y=\frac{1}{2}{x^2}$的碟宽为4,抛物线y=ax2(a>0)的碟宽为$\frac{2}{a}$.
(2)如果抛物线y=a(x-1)2-6a(a>0)的碟宽为6,那么a=$\frac{1}{3}$.
(3)将抛物线yn=anx2+bnx+cn(an>0)的准蝶形记为Fn(n=1,2,3,…),我们定义F1,F2,…,Fn为相似准蝶形,相应的碟宽之比即为相似比.如果Fn与Fn-1的相似比为$\frac{1}{2}$,且Fn的碟顶是Fn-1的碟宽的中点,现在将(2)中求得的抛物线记为y1,其对应的准蝶形记为F1
①求抛物线y2的表达式;
②请判断F1,F2,…,Fn的碟宽的右端点是否在一条直线上?如果是,直接写出该直线的表达式;如果不是,说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

2.阅读下面材料:
小明遇到这样一个问题:如图1,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,试判断BC和AC、AD之间的数量关系.
小明发现,利用轴对称做一个变化,在BC上截取CA′=CA,连接DA′,得到一对全等的三角形,从而将问题解决(如图2).
请回答:
(1)在图2中,小明得到的全等三角形是△ADC≌△A′DC;
(2)BC和AC、AD之间的数量关系是BC=AC+AD.
参考小明思考问题的方法,解决问题:
如图3,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9.求AB的长.

查看答案和解析>>

科目: 来源: 题型:解答题

1.如图(1),在Rt△ABC中,AB=AC,点D位直线BC上一动点(点D不与B,C重合)以AD为边作正方形ADEF(A、D、E、F按逆时针排列),连接CF.
初步感知:
(1)当点D在边BC上时,求证:BD=CF;
解决问题:
(2)如图(2),当点D在边BC的延长线上且其他条件不变时,请写出AC、CF、CD之间存在的数量关系,并说明理由;
拓展研究:
(3)如图(3),当点D在边CB的延长线上且其他条件不变时,请直接写出AC、CF、CD之间存在的数量关系.

查看答案和解析>>

科目: 来源: 题型:解答题

20.为了弘扬传统文化,某中学准备开设“书法”“武术”“京剧”“国画”四门选修课,随机抽取了部分学生调查最喜欢的课程:用“A”表示“书法”,“B”表示“武术”,“C”表示“京剧”;“D”表示“国画”,如图是学校老师根据问卷调查统计资料绘制的两幅不完全的统计图.请你根据统计图提供的信息解答下列问题:

(1)本次调查中,共调查了多少名学生?
(2)将条形图补充完整;
(3)如果该校有学生1200人,请你估计该校生最喜欢国画的约有多少人?

查看答案和解析>>

科目: 来源: 题型:填空题

19.如图,把一块直角三角板的直角顶点放在直角尺的一边上,如果∠1=34°,那么∠2的度数是56°.

查看答案和解析>>

科目: 来源: 题型:选择题

18.如果点P(3x+9,x-4)在平面直角坐标系的第四象限内,那么x的取值范围在数轴上可表示为(  )
A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:解答题

17.阅读下面材料:
小明遇到这样一个问题:如图1,在△ABC中,DE∥BC分别交AB于D,交AC于E.已知CD⊥BE,CD=3,BE=5,求BC+DE的值.
小明发现,过点E作EF∥DC,交BC延长线于点F,构造△BEF,经过推理和计算能够使问题得到解决(如图2).

请回答:BC+DE的值为$\sqrt{34}$.
参考小明思考问题的方法,解决问题:
如图3,已知?ABCD和矩形ABEF,AC与DF交于点G,AC=BF=DF,求∠AGF的度数.

查看答案和解析>>

科目: 来源: 题型:解答题

16.如图,点A,B,C,D在同一条直线上,AB=FC,∠A=∠F,∠EBC=∠FCB.求证:BE=CD.

查看答案和解析>>

科目: 来源: 题型:填空题

15.若三角形的某一边长等于其外接圆半径,则将此三角形称为等径三角形,该边所对的角称为等径角.已知△ABC是等径三角形,则等径角的度数为30°或150°.

查看答案和解析>>

科目: 来源: 题型:选择题

14.甲骑车到乙家研讨数学问题,中途因等候红灯停止了一分钟,之后又骑行了1.2千米到达了乙家.若甲骑行的速度始终不变,从出发开始计时,剩余的路程S(单位:千米)与时间t(单位:分钟)的函数关系的图象如图所示,则图中a等于(  )
A.1.2B.2C.2.4D.6

查看答案和解析>>

同步练习册答案