相关习题
 0  304267  304275  304281  304285  304291  304293  304297  304303  304305  304311  304317  304321  304323  304327  304333  304335  304341  304345  304347  304351  304353  304357  304359  304361  304362  304363  304365  304366  304367  304369  304371  304375  304377  304381  304383  304387  304393  304395  304401  304405  304407  304411  304417  304423  304425  304431  304435  304437  304443  304447  304453  304461  366461 

科目: 来源: 题型:选择题

13.某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:
对这两名运动员的成绩进行比较,下列四个结论:
①甲运动员得分的极差大于乙运动员得分的极差;
②甲运动员得分的中位数大于乙运动员得分的中位数;
③甲运动员的得分平均数大于乙运动员的得分平均数;
④甲运动员的成绩比乙运动员的成绩稳定.
其中正确的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目: 来源: 题型:选择题

12.关于x的二次函数y=2sinαx2-(4sinα+$\frac{1}{2}$)x-sinα+$\frac{1}{2}$,其中a为锐角,则:
①当a等于30°时,函数有最小值-$\frac{25}{16}$;
②当a不等于30°时,函数图象与坐标轴一定有三个交点;
③当a<60°时,函数在x>1时,y随x的增大而增大;
④无论锐角a怎么变化,函数图象必过定点.
其中正确的结论有(  )
A.①③B.①②③C.①②④D.②③④

查看答案和解析>>

科目: 来源: 题型:解答题

11.请在图甲、图乙所示的方格纸上各画一个形状不同的等腰三角形,使三角形内部(不包含边)只有2个格点.(注:只要两个等腰三角形不全等,就认为是不同的画法)

查看答案和解析>>

科目: 来源: 题型:解答题

10.如图,在平面直角坐标系中,正方形OABC的点A在y轴上,点C在x轴上,点B(4,4),点E在BC边上,将△ABE绕点A顺时针旋转90°,得△AOF,连接EF交y轴于点D.
(Ⅰ)若点E的坐标为(4,3),求①线段EF的长;②点D的坐标;
(Ⅱ)设点E(4,m),S=S△ABE+S△FCE,试用含m的式子表示S,并求出使S取得最大值时点E的坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

9.如图,等腰梯形ABCD中,AD∥BC,下底边AD在x轴上,AB=BC=CD=2且点A(-1,0).动点M、N均以每秒1个单位的相同速度从点A、D同时出发,分别沿A→B→C和D→A运动,当点N到达点A时,M、N同时停止运动.设运动时间为t秒.
(1)请直接写出B、D两点的坐标;
(2)若以MN为直径的圆与直线BC相切,试求出此时t的值;
(3)当t=3秒时,在线段OD的垂直平分线上是否存在点P,使得∠DPO=∠DMO?若存在,请求出点P的纵坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

8.如图,在直线l上摆放有△ABC和直角梯形DEFG,且CD=6cm;在△ABC中:∠ACB=90°,∠BAC=30°,AB=4cm;在直角梯形DEFG中:EF∥DG,∠DGF=90°,∠EDG=60°,DG=6cm,DE=4cm.解答下列问题:
(1)旋转:将△ABC绕点C顺时针方向旋转90°得到对应的△1B1C,求出AB1的长度;
(2)翻折:将△A1B1C沿过点B1且与l垂直的直线翻折,得到翻折后的对应图形△A2B1C1,试判定四边形A2B1DE的形状?并说明理由;
(3)平移:将△A2B1C1沿直线l向右平移至△A2B2C2,若设平移的距离为x(0≤x≤8),△A2B2C2与直角梯形重叠部分的面积为y,当y等于△ABC面积的一半时,x的值是多少?

查看答案和解析>>

科目: 来源: 题型:填空题

7.如图,等腰梯形ABCD,AB∥CD,AB=3$\sqrt{2}$,DC=$\sqrt{2}$,对角线AC⊥BD,平行于线段BD的直线MN、RQ分别以1个单位/秒、2个单位/秒的速度同时从点A出发沿AC方向向点C匀速平移,分别交等腰梯形ABCD的边于M、N和R、Q,分别交对角线AC于F、G,当直线RQ到达点C时两直线同时停止运动.记等腰梯形ABCD被直线MN扫过的面积为S1,被直线RQ扫过的面积为S2,若S2=mS1,则m的最小值是3.

查看答案和解析>>

科目: 来源: 题型:解答题

6.如图①,在边长为6cm的等边三角形ABC的三边上,有三个动点D,E,F(不考虑与A,B,C重合),点D从A向B运动,点E从B向C运动,点F从C向A运动,三点同时运动,到终点结束,且速度均为1cm/s.设运动的时间为t s,解答下列问题:
(1)求证:如图①,不论t如何变化,△DEF始终为等边三角形.
(2)如图①,记△DEF的面积为y(cm2),求y与t的函数关系式.并求当t取何值时,y最小,最小值为多少?
(3)如图②,建立平面直角坐标系,过点E作直线EQ∥AB,交AC于点Q,当直线EQ运动到何处时,能使△AEQ的面积最大?求出这个最大值和此时点Q的坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

5.如图,在矩形ABCD中,AB=$2\sqrt{3}$,BC=8,M是BC 的中点,P、Q两点同时从M点出发,其中点P以每秒1个单位的速度向B运动,到达点B后立即按原来的速度反向向M点运动,到达M点后停止,点Q以每秒1个单位的速度沿射线MC运动,当点P停止时点Q也随之停止.以PQ为边长向上作等边三角形PQE.
(1)求点E落在线段AD上时,P、Q两点的运动时间;
(2)设运动时间为t秒,矩形ABCD与△PQE重叠的面积为S,求出S与t之间的函数关系式,并写出t的取值范围;
(3)在矩形ABCD中,点N是线段BC上一点,并且CN=2,在直线CD上找一点H(H点在D点的上方)连接HN,DN,将△HDN绕点N逆时针旋转90°,得到△H′D′N,连接HH',得到四边形HH′D′N,四边形HH′D′N的面积能否是$\frac{31}{2}-\sqrt{3}$?若能,求出HD的长;若不能,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

4.矩形ABCD的两个顶点A、B分别在抛物线y=4x2,y=x2上,并且A、B两点的横坐标都为1,抛物线y=x2过点D,点D在第一象限,点C在抛物线y=ax2上,求a的值.

查看答案和解析>>

同步练习册答案