相关习题
 0  304520  304528  304534  304538  304544  304546  304550  304556  304558  304564  304570  304574  304576  304580  304586  304588  304594  304598  304600  304604  304606  304610  304612  304614  304615  304616  304618  304619  304620  304622  304624  304628  304630  304634  304636  304640  304646  304648  304654  304658  304660  304664  304670  304676  304678  304684  304688  304690  304696  304700  304706  304714  366461 

科目: 来源: 题型:解答题

9.在平面直角坐标系xOy中,边长为$\sqrt{2}$的正方形ABCD的对角线AC、BD相交于点P,顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动,顶点C、D都在第一象限.
(1)当∠BAO=45°时,求点P的坐标;
(2)求证:无论点A在x轴正半轴上、点B在y轴正半轴上怎样运动,点P都在∠AOB的平分线上;
(3)在运动的过程中,若点B与点O重合时,点P到y轴的距离是$\frac{\sqrt{2}}{2}$,若点A与点O重合时,点P到y轴的距离是$\frac{\sqrt{2}}{2}$.由此可见,点A、B在坐标轴的正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O)时,点P到y轴的距离h的取值范围是$\frac{\sqrt{2}}{2}<d≤1$.

查看答案和解析>>

科目: 来源: 题型:解答题

8.将进货单价为30元的商品按40元出售时,每天卖出500件.据市场调查发现,如果这种商品每件涨价1元,其每天的销售量就减少10件.
(1)要使得每天能赚取8000元的利润,且尽量减少库存,售价应该定为多少?
(2)售价定为多少时,每天获得的利润最大?最大利润为多少?

查看答案和解析>>

科目: 来源: 题型:解答题

7.某水果批发商经销一种高档水果,如果每千克盈利10元,每天可售出600kg,经市场调查发现,在进货价不变的情况下,每涨价1元,日销售量将减少20kg,现该商场要争取每天盈利最大,那么每千克应涨价多少元?获得的最大利润是多少?

查看答案和解析>>

科目: 来源: 题型:解答题

6.如图,已知正方形ABCD的边长为40cm,E为AD边的中点,G为BC的延长线上一点,连结EG交CD于点F.
(1)若FE=FC,求FC的长;
(2)在(1)的条件下,现有一动点P,从A点出发,以5cm/s的速度沿A→E→F→C的路线运动,过点P作PM⊥AB于M,PN⊥BC于N.
①当t为何值时,矩形PMBN恰好是一个正方形?
②若设矩形PMBN的面积为S,试求S与t之间的函数关系式,并写出自变量t的取值范围;
③在点P从A点运动到C点的整个过程中,试问是否存在这样的t的值,使得矩形PMBN的面积恰为888?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

5.探究问题:
(1)方法感悟:
如图①,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF.
感悟解题方法,并完成下列填空
证明:延长CB到G,使BG=DE,连接AG,
∵四边形ABCD为正方形,
∴AB=AD,∠ABC=∠D=90°,
∴∠ABG=∠D=90°,
∴△ADE≌△ABG.
∴AG=AE,∠1=∠2;
∵四边形ABCD为正方形,
∴∠BAD=90°,
∵∠EAF=45°,
∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,
∴∠1+∠3=45°.
即GAF=∠EAF.
又AG=AE,AF=AF,
∴△GAF≌△EAF.
∴FG=EF,
∵FG=FB+BG,
又BG=DE,
∴DE+BF=EF.

变化:在图①中,过点A作AM⊥EF于点M,请直接写出AM和AB的数量关系相等;
(2)方法迁移:
如图②,将Rt△ABC沿斜边AC翻折得到Rt△ADC,E,F分别是BC,CD边上的点,∠EAF=$\frac{1}{2}$∠BAD,连接EF,过点A作AM⊥EF于点M,试猜想DF,BE,EF之间有何数量关系,并证明你的猜想.试猜想AM与AB之间的数量关系.并证明你的猜想.
(3)问题拓展:
如图③,在四边形ABCD中,AB=AD,E,F分别为DC,BC上的点,满足$∠EAF=\frac{1}{2}∠DAB$,试猜想当∠B与∠D满足什么关系时,可使得DE+BF=EF.请直接写出你的猜想(不必说明理由).猜想:∠B与∠D满足关系:∠B+∠D=180°.

查看答案和解析>>

科目: 来源: 题型:解答题

4.如图:函数y=ax2+bx+c(其中a、b、c为常数)的图象分别与x轴、y轴交于A、B、C三点,M为抛物线的顶点,位于一象限,且AC⊥BC,OA<OB.
(1)试确定a、b、c的符号;
(2)求证:b2-4ac>4;
(3)当b=2时,M点与经过A、B、C三点的圆的位置关系如何?证明你的结论.

查看答案和解析>>

科目: 来源: 题型:解答题

3.如图,在梯形ABCD中,AB∥CD,∠ADC=90°,AB=6,AD=3,CD=2,在Rt△EFG中,∠GEF=90°,EF=3,GE=6,△EFG(点F和点A重合)的边EF和梯形的边AB在同一直线上.现Rt△EFG将从A以每秒1个单位的速度向射线AB方向匀速平移,当点F与点B重合时停止运动,设运动时间为t秒,解答下列问题:

(1)求线段BC的长度;
(2)在整个运动过程中,设△EFG与△ABD重叠部分的面积为S,请直接写出S与t的函数关系式和相应t的取值范围;
(3)当点F到达点B时,将△EFG绕点F顺时针旋转α(0<α<180°),旋转过程中EF所在直线交CD所在直线于M,是否存在这样的α,使△BCM为等腰三角形?若存在,求DM的长;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图①,在?ABCD中,对角线AC⊥AB,BC=10,tan∠B=2.点E是BC边上的动点,过点E作EF⊥BC于点E,交折线AB-AD于点F,以EF为边在其右侧作正方形EFGH,使EH边落在射线BC上.点E从点B出发,以每秒1个单位的速度在BC边上运动,当点E与点C重合时,点E停止运动,设点E的运动时间为t(t>0)秒.

(1)?ABCD的面积为40;当t=2秒时,点F与点A重合;
(2)点E在运动过程中,连接正方形EFGH的对角线EG,得△EHG,设△EHG与△ABC的重叠部分面积为S,请直接写出S与t的函数关系式以及对应的自变量t的取值范围;
(3)作点B关于点A的对称点Bˊ,连接CBˊ交AD边于点M(如图②),当点F在AD边上时,EF与对角线AC交于点N,连接MN得△MNC.是否存在时间t,使△MNC为等腰三角形?若存在,请求出使△MNC为等腰三角形的时间t;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知:Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别是a、b、c,设△ABC的面积为s、周长为l.
(1)填表:
abca+b-c$\frac{s}{l}$
3452$\frac{1}{2}$
5121341
815176$\frac{3}{2}$
(2)仔细观察表中你填写的数据反映出来的规律,如果a、b、c为已知的正实数,且设a+b-c=m,那么可猜想$\frac{s}{l}$=$\frac{m}{4}$.(用含m的代数式表示)
(3)证明你的猜想.

查看答案和解析>>

科目: 来源: 题型:解答题

9.如图,?ABCD中,∠ABC和∠BCD的平分线交于AD边上一点E,且BE=4,CE=3,求AB的长.

查看答案和解析>>

同步练习册答案