相关习题
 0  304545  304553  304559  304563  304569  304571  304575  304581  304583  304589  304595  304599  304601  304605  304611  304613  304619  304623  304625  304629  304631  304635  304637  304639  304640  304641  304643  304644  304645  304647  304649  304653  304655  304659  304661  304665  304671  304673  304679  304683  304685  304689  304695  304701  304703  304709  304713  304715  304721  304725  304731  304739  366461 

科目: 来源: 题型:解答题

19.“重百”、“沃尔玛”两家超市出售 同样的保温壶和水杯,保温壶和水杯在两家超市的售价分别一样.已知买1个保温壶和1个水杯要花费60元,买2个保温壶和3个水杯要花费130元.
(1)请问:一个保温壶与一个水杯售价各是多少元?(列方程组求解)
(2)为了迎接“五一劳动节”,两家超市都在搞促销活动,“重百”超市规定:这两种商品都打九折;“沃尔玛”超市规定:买一个保温壶赠送一个水杯.若某单位想要买4个保温壶和15个水杯,如果只能在一家超市购买,请问选择哪家超市购买更合算?请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知,∠EPF的角平分线上有一点O,以点0为圆心的圆与角的两边分别交于A,B和C,D.易证:AB=CD.
当点P在⊙O外(如图二),点P在⊙O内,(如图三)的位置时,请你猜想并写出AB与CD的数量关系?并选择其中一种情况加以证明.

查看答案和解析>>

科目: 来源: 题型:解答题

17.如图,矩形ABCD中,E、F分别是AD、BC上的点,且DE=BF,EF与BD交于点O.
(1)求证:OE=OF;
(2)若CF=CE,∠EFC=2∠DBC,CD=1,求BC.

查看答案和解析>>

科目: 来源: 题型:填空题

16.如图,在Rt△ABC中,∠ABC=90°,点D在边AC上,线段DB绕点D顺时针旋转,端点B恰巧落在边AB上的点E处.如果$\frac{AE}{EB}$=y,$\frac{AD}{DC}$=x.那么y与x满足的关系式是:y=$\frac{x-1}{2}$(用含x的代数式表示y).

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知:在正方形ABCD中,点G是BC边上的任意一点,DE⊥AG于点E,BF∥DE,交AG于点F.求证:AF=BF+EF.

查看答案和解析>>

科目: 来源: 题型:填空题

14.如图,将直线$y=\frac{{\sqrt{3}}}{3}x$向上平移2个单位交坐标轴于点A、D,然后绕AD中点B逆时针旋转60°,三条直线与y轴围成四边形ABCO,若四边形始终覆盖着二次函数y=x2-2mx+m2-1图象的一部分,则满足条件的实数m的取值范围为-$\sqrt{3}$-$\sqrt{2}$≤m≤$\sqrt{3}$.

查看答案和解析>>

科目: 来源: 题型:解答题

13.(1)实数a、b在数轴上的位置如图所示,请化简:|a|-$\sqrt{a^2}-\sqrt{b^2}$;
(2)利用不等式性质将6x+5<4x-3化为x>a或或x<a的形式.

查看答案和解析>>

科目: 来源: 题型:解答题

12.某市为鼓励市民节约用水和加强对节水的管理,制定了以下每月每户用水的收费标准:
①用水量不超过8立方米时,每立方米收费0.8元,并加收每立方米0.2元的污水处理费;
②用水量超过8立方米时,在①的基础上,超过8立方米的部分,每立方米收费1.6元,并加收每立方米0.4元的污水处理费.
设某户一个月的用水量为x立方米,应交水费为y元
(1)试分析对①②两种情况,求出y关于x的函数解析式,并写出函数的定义域;
(2)如果该户一个月的水费为20元,求该户这一个月的用水量.

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知:如图,在△ABC中,D是BC边上的一点,连接AD,取AD的中点E,过点A作BC的平行线与CE的延长线交于点F,连接DF.
(1)求证:△AEF≌△DEC;
(2)若CF=AD,试判断四边形AFDC是什么样的四边形?并说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

10.如图①,底面积为30cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体”,现向容器匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.

试根据图中提供的信息,解答下列问题:
(1)圆柱形容器的高为14cm,匀速注水流速度为5cm2/s;
(2)若“几何体”的下方圆柱的底面积为15cm2,则图中②中a的值为6cm;
(3)在(2)的条件下,求“几何体”上方圆柱的高和底面积.
(友情提醒:圆柱的体积=底面积×高)

查看答案和解析>>

同步练习册答案