相关习题
 0  305197  305205  305211  305215  305221  305223  305227  305233  305235  305241  305247  305251  305253  305257  305263  305265  305271  305275  305277  305281  305283  305287  305289  305291  305292  305293  305295  305296  305297  305299  305301  305305  305307  305311  305313  305317  305323  305325  305331  305335  305337  305341  305347  305353  305355  305361  305365  305367  305373  305377  305383  305391  366461 

科目: 来源: 题型:选择题

4.如图所示是二次函数y=ax2+bx+c图象的一部分,图象过A点(3,0),对称轴为x=1,给出四个结论:①b2-4ac>0;②2a+b=0;③a+b=0;④当x=-1或x=3时,函数y的值都等于0,其中正确结论是(  )
A.②③④B.①③④C.①②③D.①②④

查看答案和解析>>

科目: 来源: 题型:选择题

3.已知抛物线y=ax2+bx+c(a>0)过(-2,0),(2,3)两点,那么抛物线的对称轴(  )
A.只能是x=-1
B.可能是y轴
C.可能在y轴右侧且在直线x=2的左侧
D.可能在y轴左侧且在直线x=-2的右侧

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图,四边形ABCD为⊙O的内接四边形,AB为⊙O的直径,$\widehat{AD}$=$\widehat{CD}$,过D点作DE⊥BC,交BC延长线于点E,且ED延长线交BA延长线于点P.
(1)求证:PE为⊙O的切线;
(2)若PD=BD=2$\sqrt{3}$,求PD,PA与所围成的阴影面积(保留根号和π).

查看答案和解析>>

科目: 来源: 题型:选择题

1.不等式2x+1≤3的解集在数轴上表示正确的是(  )
A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知AB是圆O的切线,切点为B,直线AO交圆O于C、D两点,CD=2,∠DAB=30°,动点P在直线AB上运动,PC交圆O于另一点Q.
(1)当点P运动到使Q、C两点重合时(如图1),求AP的长;
(2)点P在运动过程中,有几个位置(几种情况)使△CQD的面积为$\frac{1}{2}$?(直接写出答案)
(3)当△CQD的面积为$\frac{1}{2}$,且Q位于以CD为直径的上半圆,CQ>QD时(如图2),求AP的长.

查看答案和解析>>

科目: 来源: 题型:解答题

19.如图,在平面直角坐标系中A点的坐标为(8,y),AB⊥x轴于点B,sin∠OAB=$\frac{4}{5}$,反比例函数y=$\frac{k}{x}$的图象的一支经过AO的中点C,且与AB交于点D.
(1)求反比例函数解析式;
(2)若函数y=3x与y=$\frac{k}{x}$的图象的另一支交于点M,求三角形OMB与四边形OCDB的面积的比.

查看答案和解析>>

科目: 来源: 题型:选择题

18.如图,有一块矩形纸片ABCD,AB=8,AD=6,将纸片折叠,使得AD边落在AB边上,折痕为AE,再将△AED沿DE向右翻折,AE与BC的交点为F,则△CEF的面积为(  )
A.$\frac{1}{2}$B.$\frac{9}{8}$C.2D.4

查看答案和解析>>

科目: 来源: 题型:解答题

17.正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A按顺时针方向旋转,记旋转角∠DAG=α,其中0°≤α≤180°,连结DF,BF,如图.
(1)若α=0°,则DF=BF,请加以证明;
(2)试画一个图形(即反例),说明(1)中命题的逆命题是假命题;
(3)对于(1)中命题的逆命题,如果能补充一个条件后能使该逆命题为真命题,请直接写出你认为需要补充的一个条件,不必说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

16.如图,已知反比例函数y=$\frac{{k}_{1}}{x}$与一次函数y=k2x+b的图象交于点A(1,8)、B(-4,m).
(1)求k1、k2、b的值;
(2)求△AOB的面积;
(3)若M(x1,y1)、N(x2,y2)是反比例函数y=$\frac{{k}_{1}}{x}$图象上的两点,且x1<x2,y1<y2,指出点M、N各位于哪个象限,并简要说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

15.若关于x的二次函数y=ax2+bx+c(a>0,c>0,a,b,c是常数)与x轴交于两个不同的点A(x1,0),B(x2,0)(0<x1<x2),与y轴交于点P,其图象顶点为点M,点O为坐标原点.
(1)当x1=c=2,a=$\frac{1}{3}$时,求x2与b的值;
(2)当x1=2c时,试问△ABM能否为等边三角形?判断并证明你的结论;
(3)当x1=mc(m>0)时,记△MAB,△PAB的面积分别为S1,S2,若△BPO∽△PAO,且S1=S2,求m的值.

查看答案和解析>>

同步练习册答案