相关习题
 0  305198  305206  305212  305216  305222  305224  305228  305234  305236  305242  305248  305252  305254  305258  305264  305266  305272  305276  305278  305282  305284  305288  305290  305292  305293  305294  305296  305297  305298  305300  305302  305306  305308  305312  305314  305318  305324  305326  305332  305336  305338  305342  305348  305354  305356  305362  305366  305368  305374  305378  305384  305392  366461 

科目: 来源: 题型:解答题

14.如图,正比例函数y=2x的图象与反比例函数y=$\frac{k}{x}$的图象交于A、B两点,过点A作AC垂直x轴于点C,连结BC.若△ABC的面积为2.
(1)求k的值;
(2)x轴上是否存在一点D,使△ABD为直角三角形?若存在,求出点D的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

13.如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.
(1)求证:DE⊥AG;
(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.
①在旋转过程中,当∠OAG′是直角时,求α的度数;
②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知反比例函数y=$\frac{m-5}{x}$(m为常数,且m≠5).
(1)若在其图象的每个分支上,y随x的增大而增大,求m的取值范围;
(2)若其图象与一次函数y=-x+1图象的一个交点的纵坐标是3,求m的值.

查看答案和解析>>

科目: 来源: 题型:解答题

11.某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元,为按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y与x满足下列关系式:
y=$\left\{\begin{array}{l}{54x}&{(0≤x≤5)}\\{30x+120}&{(5<x≤15)}\end{array}\right.$.
(1)李明第几天生产的粽子数量为420只?
(2)如图,设第x天每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大,最大利润是多少元?(利润=出厂价-成本)
(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?

查看答案和解析>>

科目: 来源: 题型:选择题

10.如图,抛物线y=-x2+2x+m+1交x轴于点A(a,0)和B(b,0),交y轴于点C,抛物线的顶点为D,下列四个命题:
①当x>0时,y>0;
②若a=-1,则b=4;
③抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,则y1>y2
④点C关于抛物线对称轴的对称点为E,点G,F分别在x轴和y轴上,当m=2时,四边形EDFG周长的最小值为6$\sqrt{2}$.
其中真命题的序号是(  )
A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:填空题

9.如图,正方形ABCD的边CD在正方形ECGF的边CE上,O是EG的中点,∠EGC的平分线GH过点D,交BE于点H,连接OH,FH,EG与FH交于点M,对于下面四个结论:①GH⊥BE;②HO$\stackrel{∥}{=}$$\frac{1}{2}$BG;③S正方形ABCD:S正方形ECGF=1:$\sqrt{2}$;④EM:MG=1:(1+$\sqrt{2}$),其中正确结论的序号为①②④.

查看答案和解析>>

科目: 来源: 题型:解答题

8.如图,在△ABC中,AB=AC,AD⊥BC于点D,E为边AB上一点,ED=CD,以CE为直径作⊙O,交BC于点F.
(1)求证:AB与⊙O相切;
(2)若DF=1,DC=3,求AE的长.

查看答案和解析>>

科目: 来源: 题型:填空题

7.计算:-22-2cos60°+|-$\sqrt{12}$|+(3.14-π)0=2$\sqrt{3}$-22.

查看答案和解析>>

科目: 来源: 题型:填空题

6.分解因式:ay2+2ay+a=a(y+1)2

查看答案和解析>>

科目: 来源: 题型:填空题

5.函数y=$\frac{\sqrt{x-1}}{2x-4}$中,自变量x的取值范围是x≥1且x≠2.

查看答案和解析>>

同步练习册答案