相关习题
 0  305401  305409  305415  305419  305425  305427  305431  305437  305439  305445  305451  305455  305457  305461  305467  305469  305475  305479  305481  305485  305487  305491  305493  305495  305496  305497  305499  305500  305501  305503  305505  305509  305511  305515  305517  305521  305527  305529  305535  305539  305541  305545  305551  305557  305559  305565  305569  305571  305577  305581  305587  305595  366461 

科目: 来源: 题型:解答题

6.如图,二次函数y=ax2+bx+3的图象与x轴相交于点A(-3,0)、B(1,0),与y轴相交于点C,点G是二次函数图象的顶点,直线GC交x轴于点H(3,0),AD平行GC交y轴于点D.
(1)求该二次函数的表达式;
(2)求证:四边形ACHD是正方形;
(3)如图2,点M(t,p)是该二次函数图象上的动点,并且点M在第二象限内,过点M的直线y=kx交二次函数的图象于另一点N.
①若四边形ADCM的面积为S,请求出S关于t的函数表达式,并写出t的取值范围;
②若△CMN的面积等于$\frac{21}{4}$,请求出此时①中S的值.

查看答案和解析>>

科目: 来源: 题型:解答题

5.如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=-x2+4x刻画,斜坡可以用一次函数y=$\frac{1}{2}$x刻画.
(1)请用配方法求二次函数图象的最高点P的坐标;
(2)小球的落点是A,求点A的坐标;
(3)连接抛物线的最高点P与点O、A得△POA,求△POA的面积;
(4)在OA上方的抛物线上存在一点M(M与P不重合),△MOA的面积等于△POA的面积.请直接写出点M的坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

4.如图,在水平地面上竖立着一面墙AB,墙外有一盏路灯D.光线DC恰好通过墙的最高点B,且与地面形成37°角.墙在灯光下的影子为线段AC,并测得AC=5.5米.
(1)求墙AB的高度(结果精确到0.1米);(参考数据:tan37°≈0.75,sin37°≈0.60,cos37°≈0.80)
(2)如果要缩短影子AC的长度,同时不能改变墙的高度和位置,请你写出两种不同的方法.

查看答案和解析>>

科目: 来源: 题型:解答题

3.若正比例函数y=k1x的图象与反比例函数y=$\frac{{k}_{2}}{x}$的图象有一个交点坐标是(-2,4)
(1)求这两个函数的表达式;
(2)求这两个函数图象的另一个交点坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图,△ABC是等腰三角形,AB=AC,请你用尺规作图将△ABC分成两个全等的三角形,并说明这两个三角形全等的理由.(保留作图痕迹,不写作法)

查看答案和解析>>

科目: 来源: 题型:填空题

1.各边长度都是整数、最大边长为8的三角形共有20个.

查看答案和解析>>

科目: 来源: 题型:填空题

20.如图,△ABC的三个顶点都在方格纸的格点上,其中点A的坐标是(-1,0).现将△ABC绕点A顺时针旋转90°,则旋转后点C的坐标是(2,1).

查看答案和解析>>

科目: 来源: 题型:填空题

19.如图,在Rt△ABC中,AB=BC,∠B=90°,AC=10$\sqrt{2}$.四边形BDEF是△ABC的内接正方形(点D、E、F在三角形的边上).则此正方形的面积是25.

查看答案和解析>>

科目: 来源: 题型:选择题

18.下列给出5个命题:
①对角线互相垂直且相等的四边形是正方形
②六边形的内角和等于720°
③相等的圆心角所对的弧相等
④顺次连接菱形各边中点所得的四边形是矩形
⑤三角形的内心到三角形三个顶点的距离相等.
其中正确命题的个数是(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知(m-1)2+|n+2|=0,求代数式-(m2-2mn)•12m2-(12m•n3+8m4•n2)÷4mn的值.

查看答案和解析>>

同步练习册答案