相关习题
 0  305561  305569  305575  305579  305585  305587  305591  305597  305599  305605  305611  305615  305617  305621  305627  305629  305635  305639  305641  305645  305647  305651  305653  305655  305656  305657  305659  305660  305661  305663  305665  305669  305671  305675  305677  305681  305687  305689  305695  305699  305701  305705  305711  305717  305719  305725  305729  305731  305737  305741  305747  305755  366461 

科目: 来源: 题型:解答题

13.如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,连接OA,抛物线y=x2从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动.
(Ⅰ)求线段OA所在直线的函数解析式;
(Ⅱ)设抛物线顶点M的横坐标为m,
①用m的代数式表示点P的坐标;
②当m为何值时,线段PB最短;
(Ⅲ)当线段PB最短时,相应的抛物线上是否存在点Q,使△QMA的面积与△PMA的面积相等?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:填空题

12.如图,点E是矩形ABCD的边AB上一点,将△BEC沿CE折叠,使点B落在AD边上的点F处.若△AEF∽△FEC∽△DFC,则$\frac{AB}{BC}$的值是$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

11.如图,菱形ABCD中,点P是CD的中点,∠BCD=60°,射线AP交BC的延长线于点E,射线BP交DE于点K,点O是线段BK的中点.
(1)求证:△ADP≌△ECP;
(2)若BP=n•PK,试求出n的值;
(3)作BM丄AE于点M,作KN丄AE于点N,连结MO、NO,如图2所示,请证明△MON是等腰三角形,并直接写出∠MON的度数.

查看答案和解析>>

科目: 来源: 题型:解答题

10.(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF;
(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠ECG=45°,求证:S△ECG=S△BCE+S△CDG

查看答案和解析>>

科目: 来源: 题型:选择题

9.如图,OA=OB=6cm,线段OB从与OA重合的位置开始沿逆时针方向旋转120°,在旋转过程中,设AB的中点为P(当OA与OB重合时,记点P与点A重合),则点P运动的路径长为(  )
A.6cmB.4πcmC.2πcmD.3cm

查看答案和解析>>

科目: 来源: 题型:解答题

8.如图,抛物线y=-x2+bx+c与x轴交于A(-1,0)、B(5,0),直线y=-$\frac{3}{4}$x+3与y轴交于点C,与x轴交于点D.点P是x轴上方抛物线上一个动点,过P作PE⊥x轴交直线CD于点E.设点P的横坐标为m.
(1)求抛物线的解析式;
(2)当m=$\frac{9}{2}$时,在抛物线的对称轴上找一点G,使PG+GB最小,求点G的坐标;
(3)若E′是点E关于直线PC的对称点,是否存在点P,使点E′落在y轴上?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:选择题

7.如图,将△ABC放在每个小正方形边长为1的网格中,点A、B、C均落在格点上,用一个圆面去覆盖△ABC,能够完全覆盖这个三角形的最小圆面半径是(  )
A.$\sqrt{5}$B.$\sqrt{6}$C.2D.$\frac{5}{2}$

查看答案和解析>>

科目: 来源: 题型:选择题

6.如果a的倒数是-2,那么a等于(  )
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知如图,在矩形ABCD中,P是边AD上的一动点,连结BP、CP,过点B作射线交线段CP的延长线于点E,交边AD与点M,且使得∠ABE=∠CBP,如果AB=2,BC=5,AP=x(2<x≤5),PM=y
(1)求y关于x的函数解析式;
(2)当AP=4时,求∠EBP的正切值;
(3)如果△EBC是以∠EBC为底角的等腰三角形,求AP的长.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知抛物线y=ax2+bx+c(a≠0)的图象经过原点O,交x轴于点A,其顶点P的坐标为(-$\sqrt{3}$,-1)
(1)求抛物线的函数解析式及点A的坐标;
(2)在抛物线上求点M,使S△MOA=2S△AOP,则M点的坐标为M1(-$\sqrt{3}$+3,2),M2(-$\sqrt{3}$-3,2).
(3)在抛物线上是否存在点Q(异于P点),使△QAO与△AOP相似?如果存在,请求出Q点的坐标;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案