相关习题
 0  305640  305648  305654  305658  305664  305666  305670  305676  305678  305684  305690  305694  305696  305700  305706  305708  305714  305718  305720  305724  305726  305730  305732  305734  305735  305736  305738  305739  305740  305742  305744  305748  305750  305754  305756  305760  305766  305768  305774  305778  305780  305784  305790  305796  305798  305804  305808  305810  305816  305820  305826  305834  366461 

科目: 来源: 题型:选择题

13.如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(0.5,1),下列结论:①ac<0;②a+b=0;③4ac-b2=4a;④(a+c)2-b2<0.其中正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目: 来源: 题型:解答题

12.如图,在平面直角坐标系中,已知A(0,a),B(b,0),C(b,c)三点,其中a、b、c满足关系式|a-2|+(b-3)2=0,c=2b-a
 (1)求a、b、c的值.  
(2)如果在第二象限内有一点P(m,0.5),请用含m的式子表示四边形ABOP的面积.
(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

11.(1)$\left\{\begin{array}{l}{\frac{1}{3}x+\frac{2}{3}(y-1)=2}\\{2(x-1)=y-1}\end{array}\right.$                
(2)$\left\{\begin{array}{l}{2x-3(x-2)>3}\\{\frac{2x-1}{5}>\frac{x+2}{2}-1}\end{array}\right.$.

查看答案和解析>>

科目: 来源: 题型:选择题

10.已知关于x的不等式组$\left\{\begin{array}{l}{x-m≥n}\\{2x-m<2n+1}\end{array}\right.$的解集为3≤x<5,则m-n的值是(  )
A.-9B.9C.5D.-5

查看答案和解析>>

科目: 来源: 题型:选择题

9.反比例函数$y=\frac{2}{x}$的图象上有三个点(x1,y1),(x2,y2),(x3,y3),其中x1<x2<0<x3,则y1、y2、y3的大小关系是(  )
A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y3<y2<y1

查看答案和解析>>

科目: 来源: 题型:选择题

8.如图,矩形ABCD的长为20,宽为14,点O1为矩形的中心,⊙O2的半径为5,O1O2⊥AB于点P,O1O2=23.若⊙O2绕点P按顺时针方向旋转360°,在旋转过程中,⊙O2与矩形的边所在的直线相切的位置一共出现(  )
A.18次B.12次C.8次D.4次

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知⊙O为△DEF的内切圆,切点分别为A、B、C,$\widehat{AB}$=$\widehat{BC}$
(1)如图1,求证:BE=BF;
(2)如图2,若tan∠ABC=$\frac{4}{3}$,求sin∠EDF的值.

查看答案和解析>>

科目: 来源: 题型:解答题

6.如图,△ABC中∠ABC=90°,以AB为直径作⊙O,与AC交于点D,点E为DC中点,连DE
(1)求证:DE为⊙O的切线;
(2)连DE、AE,当∠CAB为多少度时,四边形AOED是平行四边形,并证明;
(3)在(2)的条件下,连AE交⊙O于F,若AB=10,求DF的长.

查看答案和解析>>

科目: 来源: 题型:解答题

5.按图中所示的两种方式分割正方形,你能分别得到什么结论?

查看答案和解析>>

科目: 来源: 题型:解答题

4.定义:对于平面直角坐标系xOy中的线段PQ和点M,在△MPQ中,当PQ边上的高为2时,称M为PQ的“等高点”,称此时MP+MQ为PQ的“等高距离”.
(1)若P(1,2),Q(4,2).
①在点A(1,0),B($\frac{5}{2}$,4),C(0,3)中,PQ的“等高点”是A、B;
②若M(t,0)为PQ的“等高点”,求PQ的“等高距离”的最小值及此时t的值.
(2)若P(0,0),PQ=2,当PQ的“等高点”在y轴正半轴上且“等高距离”最小时,直接写出点Q的坐标.

查看答案和解析>>

同步练习册答案