相关习题
 0  305689  305697  305703  305707  305713  305715  305719  305725  305727  305733  305739  305743  305745  305749  305755  305757  305763  305767  305769  305773  305775  305779  305781  305783  305784  305785  305787  305788  305789  305791  305793  305797  305799  305803  305805  305809  305815  305817  305823  305827  305829  305833  305839  305845  305847  305853  305857  305859  305865  305869  305875  305883  366461 

科目: 来源: 题型:选择题

4.在平面直角坐标系中,将点P(-1,2)先向右平移3个单位长度,再向下平移3个单位长度得到的对应点P′的坐标是(  )
A.(-4,5)B.(-4,-1)C.(2,-1)D.(2,5)

查看答案和解析>>

科目: 来源: 题型:解答题

3.如图1,一条抛物线与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,且当x=-1和x=3时,y的值相等,直线y=$\frac{15}{8}$x-$\frac{21}{4}$与抛物线有两个交点,其中一个交点的横坐标是6,另一个交点是这条抛物线的顶点M.
(1)求这条抛物线的表达式.
(2)动点P从原点O出发,在线段OB上以每秒1个单位长度的速度向点B运动,同时点Q从点B出发,在线段BC上以每秒2个单位长度的速度向点C运动,当一个点到达终点时,另一个点立即停止运动,设运动时间为t秒.
①若使△BPQ为直角三角形,请求出所有符合条件的t值;
②求t为何值时,四边形ACQP的面积有最小值,最小值是多少?
(3)如图2,当动点P运动到OB的中点时,过点P作PD⊥x轴,交抛物线于点D,连接OD,OM,MD得△ODM,将△OPD沿x轴向左平移m个单位长度(0<m<2),将平移后的三角形与△ODM重叠部分的面积记为S,求S与m的函数关系式.

查看答案和解析>>

科目: 来源: 题型:解答题

2.某粮油超市平时每天都将一定数量的某些品种的粮食进行包装以便出售,已知每天包装大黄米的质量是包装江米质量的$\frac{5}{4}$倍,且每天包装大黄米和江米的质量之和为45千克.
(1)求平均每天包装大黄米和江米的质量各是多少千克?
(2)为迎接今年6月20日的“端午节”,该超市决定在前20天增加每天包装大黄米和江米的质量,二者的包装质量与天数的变化情况如图所示,节日后又恢复到原来每天的包装质量.分别求出在这20天内每天包装大黄米和江米的质量随天数变化的函数关系式,并写出自变量的取值范围.
(3)假设该超市每天都会将当天包装后的大黄米和江米全部售出,已知大黄米成本价为每千克7.9元,江米成本每千克9.5元,二者包装费用平均每千克均为0.5元,大黄米售价为每千克10元,江米售价为每千克12元,那么在这20天中有哪几天销售大黄米和江米的利润之和大于120元?[总利润=售价额-成本-包装费用].

查看答案和解析>>

科目: 来源: 题型:解答题

1.如图,点P是⊙O外一点,PA切⊙O于点A,AB是⊙O的直径,连接OP,过点B作BC∥OP交⊙O于点C,连接AC交OP于点D.
(1)求证:PC是⊙O的切线;
(2)若PD=$\frac{16}{3}$,AC=8,求图中阴影部分的面积;
(3)在(2)的条件下,若点E是$\widehat{AB}$的中点,连接CE,求CE的长.

查看答案和解析>>

科目: 来源: 题型:解答题

20.某化妆品专卖店,为了吸引顾客,在“母亲节”当天举办了甲、乙两种品牌化妆品有奖酬宾活动,凡购物满88元,均可得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其它都相同,摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色决定送礼金券的多少(如表)
甲种品牌化妆品两红一红一白两白
礼金券(元)6126
乙种品牌化妆品两红一红一白两白
礼金券(元)12612
(1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率;
(2)如果一个顾客当天在本店购物满88元,若只考虑获得最多的礼品券,请你帮助分析选择购买哪种品牌的化妆品?并说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

19.雾霾天气严重影响市民的生活质量.在今年寒假期间,某校八年级一班的综合实践小组同学对“雾霾天气的主要成因”随机调查了所在城市部分市民.并对调查结果进行了整理.绘制了如图不完整的统计图表.观察分析并回答下列问题.

(1)本次被调查的市民共有多少人?
(2)分别补全条形统计图和扇形统计图,并计算图2中区域B所对应的扇形圆心角的度数;
(3)若该市有100万人口,请估计持有A、B两组主要成因的市民有多少人?
组别雾霾天气的主要成因百分比
A工业污染45%
B汽车尾气排放m
C炉烟气排放15%
D其他(滥砍滥伐等)n

查看答案和解析>>

科目: 来源: 题型:填空题

18.如图,正方形的阴影部分是由四个直角边长都是1和3的直角三角形组成的,假设可以在正方形内部随意取点,那么这个点取在阴影部分的概率为$\frac{1}{3}$.

查看答案和解析>>

科目: 来源: 题型:选择题

17.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是(  )
A.25°B.30°C.35°D.40°

查看答案和解析>>

科目: 来源: 题型:选择题

16.如图,△ABE和△CDE是以点E为位似中心的位似图形,已知点A(3,4),点C(2,2),点D(3,1),则点D的对应点B的坐标是(  )
A.(4,2)B.(4,1)C.(5,2)D.(5,1)

查看答案和解析>>

科目: 来源: 题型:选择题

15.云南鲁甸发生地震后,某社区开展献爱心活动,社区党员积极向灾区捐款,如图是该社区部分党员捐款情况的条形统计图,那么本次捐款钱数的众数和中位数分别是(  )
A.100元,100元B.100元,200元C.200元,100元D.200元,200元

查看答案和解析>>

同步练习册答案