相关习题
 0  305750  305758  305764  305768  305774  305776  305780  305786  305788  305794  305800  305804  305806  305810  305816  305818  305824  305828  305830  305834  305836  305840  305842  305844  305845  305846  305848  305849  305850  305852  305854  305858  305860  305864  305866  305870  305876  305878  305884  305888  305890  305894  305900  305906  305908  305914  305918  305920  305926  305930  305936  305944  366461 

科目: 来源: 题型:解答题

1.已知关于x的方程mx2-(3m-1)x+2m-2=0.
(1)求证:无论m取任何实数时,方程恒有实数根;
(2)若关于x的二次函数y=mx2-(3m-1)x+2m-2的图象经过坐标原点,得到抛物线C1.将抛物线C1向下平移后经过点A(0,-2)进而得到新的抛物线C2,直线l经过点A和点B(2,0),求直线l和抛物线C2的解析式;
(3)在直线l下方的抛物线C2上有一点C,求点C到直线l的距离的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知二次函数y=x2-2x+c(c为常数).
(1)若该二次函数的图象与两坐标轴有三个不同的交点,求c的取值范围;
(2)已知该二次函数的图象与x轴交于点A(-1,0)和点B,与y轴交于点C,顶点为D,若存在点P(m,0)(m>3)使得△CDP与△BDP面积相等,求m的值.

查看答案和解析>>

科目: 来源: 题型:填空题

19.如图,顺次连接一个正六边形各边的中点,所得图形仍是正六边形.若大正六边形的面积为S1,小正六边形的面积为S2,则$\frac{{S}_{1}}{{S}_{2}}$的值是$\frac{4}{3}$.

查看答案和解析>>

科目: 来源: 题型:填空题

18.如图,正方形ABCD的顶点C,D在x轴的正半轴上,反比例函数y=$\frac{k}{x}$(k≠0)在第四象限的图象经过顶点A(m,-2)和BC边上的点E(n,-$\frac{2}{3}$),过点E的直线l交x轴于点F,交y轴于点G(0,-2),则点F的坐标是($\frac{9}{2}$,0).

查看答案和解析>>

科目: 来源: 题型:解答题

17.如果抛物线C1的顶点在抛物线C2上,同时,抛物线C2的顶点在抛物线C1上,那么,我们称抛物线C1与C2关联.
(1)已知两条抛物线①:y=x2+2x-1,②:y=-x2+2x+1,判断这两条抛物线是否关联,并说明理由;
(2)抛物线C1:y=$\frac{1}{8}$(x+1)2-2,动点P的坐标为(t,2),将抛物线C1绕点P(t,2)旋转180°得到抛物线C2,若抛物线C2与C1关联,求抛物线C2的解析式.

查看答案和解析>>

科目: 来源: 题型:解答题

16.(1)如图1,直线a∥b∥c∥d,且a与b,c与d之间的距离均为1,b与c之间的距离为2,现将正方形ABCD如图放置,使其四个顶点分别在四条直线上,求正方形的边长;
(2)在(1)的条件下,探究:将正方形ABCD改为菱形ABCD,如图2,当∠DCB=120°时,求菱形的边长.

查看答案和解析>>

科目: 来源: 题型:选择题

15.如图,已知抛物线y=x2+2x-3,把此抛物线沿y轴向上平移,平移后的抛物线和原抛物线及直线x=2,x=-2所围成的阴影部分的面积为S,平移的距离为m,则下列图象中,能表示S与m的函数关系的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:填空题

14.如图,在△ABC中,AB=4,将△ABC绕点B按逆时针方向旋转45°后得到△A′BC′,则阴影部分的面积为4$\sqrt{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

13.如图,点F在?ABCD的对角线AC上,过点F、B分别作AB、AC的平行线相交于点E,连接BF,∠ABF=∠FBC+∠FCB.
(1)求证:四边形ABEF是菱形;
(2)若BE=5,AD=8,sin∠CBE=$\frac{1}{2}$,求AC的长.

查看答案和解析>>

科目: 来源: 题型:解答题

12.如图,在矩形ABCD中,AB=3,BC=6,对角线交于点O.将△BCD沿直线BD翻折,得到△BED.
(1)画出△BED,连接AE;
(2)求AE的长.

查看答案和解析>>

同步练习册答案