6.类比转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整.
原题:如图(1),在正方形ABCD中,对角线AC、BD相交于点O,点E是BC边上一点,AE与BD交于点G,过点E作EF⊥AE交AC于点F,若$\frac{BE}{CE}$=2,求$\frac{EF}{EG}$的值.
(1)尝试探究
在图(1)中,过点E作EM⊥BD于点M,作EN⊥AC于点N,则EM和EN的数量关系是$\frac{ME}{NE}$=2,$\frac{EF}{EG}$的值是$\frac{1}{2}$.
(2)类比延伸
如图(2),在原题的条件下,若$\frac{BE}{CE}$=n(n>0),$\frac{EF}{EG}$的值是$\frac{1}{n}$(用含n的代数式表示),试写出解答过程.
(3)拓展迁移
如图(3),在矩形ABCD中,过点B作BH⊥AC于点O,交AD相于点H,点E是BC边上一点,AE与BH相交于点G,过点E作EF⊥AE交AC于点F若$\frac{BE}{CE}=a$,$\frac{BC}{AB}$=b(a>0,b>0),则$\frac{EF}{EG}$的值是$\frac{1}{ab}$(用含a,b的代数式表示).
