相关习题
 0  308523  308531  308537  308541  308547  308549  308553  308559  308561  308567  308573  308577  308579  308583  308589  308591  308597  308601  308603  308607  308609  308613  308615  308617  308618  308619  308621  308622  308623  308625  308627  308631  308633  308637  308639  308643  308649  308651  308657  308661  308663  308667  308673  308679  308681  308687  308691  308693  308699  308703  308709  308717  366461 

科目: 来源: 题型:解答题

16.在平面直角坐标系xOy中,已知二次函数y=ax2-2ax+c(a≠0)的图象与x轴交于A,B两点(点A在点B的左边),与y轴交于点C(0,3),且过点(4,-5).
(1)求此二次函数的表达式;
(2)若抛物线的顶点为D,连接CD、CB,问抛物线上是否存在点P,使得∠PBC+∠BDC=90°?若存在,求出点P的坐标;若不存在,请说明理由;
(3)点K是抛物线上点C关于对称轴的对称点,点G是抛物线上的动点,在x轴上是否存在点F,使A、K、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:选择题

15.如图,在矩形ABCD中,AB=8,BC=6,EF是BD的中垂线,则EF=(  )
A.$\frac{15}{4}$B.5C.8D.$\frac{15}{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

14.如图,抛物线y=-x2+bx+c的顶点为D(-1,4),与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的左侧).
(1)求抛物线的解析式;
(2)连接AC,CD,AD,试证明△ACD为直角三角形;
(3)若点E在抛物线上,EF⊥x轴于点F,以A、E、F为顶点的三角形与△ACD相似,试求出所有满足条件的点E的坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

13.解方程:3x2-6x+3=0.

查看答案和解析>>

科目: 来源: 题型:解答题

12.按要求解下列各题
2x2y-4xy2+2y3(因式分解)

查看答案和解析>>

科目: 来源: 题型:填空题

11.已知关于x的方程$\frac{m}{x-1}$=1的解是正数,则m的取值范围为m>-1且m≠0.

查看答案和解析>>

科目: 来源: 题型:解答题

10.如图,抛物线C1:y=ax2+bx+3与x轴交于A、B(4,0)两点,与y轴交于点C,且AB=BC.
(1)求抛物线的函数关系式;
(2)P为第一象限内抛物线上一点,过点P作PH⊥x轴于点H,PQ⊥BC交x轴于点Q,PH、PQ分别交BC于M、N两点,试问:是否存在这样的点P,使得△PHQ的周长恰好被BC平分?若能,请求点P的坐标;若不能,请说明理由;
(3)将抛物线C1向上平移t(t>0)个单位得到抛物线C2,若抛物线C2的顶点为T,与x轴两个交点分别为R、S,若∠RTS>∠ABC,求t的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

9.如图,已知等腰△AOB中,AB=AO=4,tan∠AOB=$\frac{3}{4}$,抛物线y=ax2+bx经过点A(4,0)与点(-2,6).
(1)求OB的长度及抛物线的函数解析式;
(2)向下平移直线OB得到直线m,直线m恰好经过点A,且与y轴交于点D,动点P在线段OB上,从点O出发向点B运动;同时动点Q在线段DA上,从点D出发向点A运动;点P的速度为每秒1个单位长,点Q的速度为每秒2个单位长,当PQ⊥AD时,求运动时间t的值;
(3)将抛物线向上平移k个单位(k可以为负数,即向下平移|k|单位长度),若平移后的抛物线与四边形ODAB的四边恰好只有两个公共点时,求实数k的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

8.一个正方体的平面展开图如图,已知正方体相对两个面上的数之和相等,则a=-3,b=2.

查看答案和解析>>

科目: 来源: 题型:选择题

7.已知$\sqrt{253.6}$=15.906,$\sqrt{25.36}$=5.036,那么$\sqrt{253600}$的值为(  )
A.159.06B.50.36C.1590.6D.503.6

查看答案和解析>>

同步练习册答案