相关习题
 0  311720  311728  311734  311738  311744  311746  311750  311756  311758  311764  311770  311774  311776  311780  311786  311788  311794  311798  311800  311804  311806  311810  311812  311814  311815  311816  311818  311819  311820  311822  311824  311828  311830  311834  311836  311840  311846  311848  311854  311858  311860  311864  311870  311876  311878  311884  311888  311890  311896  311900  311906  311914  366461 

科目: 来源: 题型:选择题

9.在平面直角坐标系中,已知抛物线与直线的图象如图所示,当y1≠y2时,取y1,y2中的较大值记为N;当y1=y2时,N=y1=y2.则下列说法:
①当0<x<2时,N=y1
②N随x的增大而增大的取值范围是x<0;
③取y1,y2中的较小值记为M,则使得M大于4的x值不存在;
④若N=2,则x=2-$\sqrt{2}$或x=1.
其中正确的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目: 来源: 题型:选择题

8.在如图所示的矩形ABCD中,已知MN丄MC,且M为AD的中点,AN=2,tan∠MCN=$\frac{1}{4}$,则AB等于(  )
A.32B.28C.36D.40

查看答案和解析>>

科目: 来源: 题型:解答题

7.某市为了解初中学生体能情况,抽取了50名初中毕业的女学生进行“一分钟仰卧起坐”次数测试,测试的情况绘制成表格如下:
次数612151820252730323536
人数1281610512113
(1)求这次抽样测试数据的平均数、众数和中位数;
(2)根据这一样本数据的特点,你认为该市中考女生“一分钟仰卧起坐”项目测试的合格标准应定为多少次较为合适?请简要说明理由;
(3)根据(2)中你认为合格的标准,试估计该市中考女生“一分钟仰卧起坐”项目测试的合格率是多少.

查看答案和解析>>

科目: 来源: 题型:解答题

6.如图△ABC与△DEA是两个全等的等腰直角三角形,∠BAC=∠D=90°,△DEA 绕点A旋转,边AD、AE与BC分别与AD、AE相交于点F、G,CB=5.
回答下列问题:
(1)求证:△GAF∽△GBA;
(2)求证:AF2=FG•FC;
(3)设y=AF2+AG2,FG=x,求y与x的函数关系式;(不要求写出自变量的取值范围)          
(4)探究BF2、FG2、GC2之间的关系,证明你的结论.

查看答案和解析>>

科目: 来源: 题型:解答题

5.如图,已知点I是△ABC的内心,AI交BC于D,交外接圆O于E,求证:
(1)IE=EC;
(2)IE2=ED•EA.

查看答案和解析>>

科目: 来源: 题型:解答题

4.如图,等腰梯形ABCD中,AD∥BC,AD=3,BC=7,∠B=60°,P为下底BC上一点(不与B、C重合),连结AP,过点P作PE交CD于E,使得∠APE=∠B
(1)求证:△ABP∽△PCE;
(2)求等腰梯形的腰AB的长;
(3)在底边BC上是否存在一点P,使DE:EC=5:3?如果存在,求BP的长;
如果不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知抛物线过A(-1,0),B(2,0),C(0,-2),顶点为M.
(1)如图1所示,D(0,-$\frac{3}{2}$),E为线段CB上一动点,EH⊥x轴,则DE+EH的最小值为2;
(2)如图2所示,点P为线段BM上一动点(不与点M,B重合),PN⊥x轴于N,则PC+$\frac{2}{3}PN$的最小值是2.

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图,在△ABC中,∠B=90°,M为AB上一点,使得AM=BC,N为BC上一点,使得CN=BM,连接AN,CM交于P点,求证:∠APM=45°.

查看答案和解析>>

科目: 来源: 题型:填空题

1.正方形ABCD在坐标系中的位置如图所示,将正方形ABCD绕D点顺时针方向旋转90°后,B点的坐标为(4,0);△DCB扫过的面积为$\frac{5}{2}$π+$\frac{5}{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

20.如图,在四边形ABCD中,AD∥BC,AD=10cm,AB=CD=15cm,sinB=$\frac{4}{5}$,点P,Q分别从点B,C同时出发,点P在BC边上沿BC方向以2cm/s的速度运动,点Q沿C→D→A→B方向以3cm/s的速度匀速运动,当其中一点到达终点时,另一点也随之停止运动,设运动时间为xs.
(1)求BC的长;
(2)①求x的取值范围;
②是否存在四边形APCQ为平行四边形?若存在,求出此时x的值;若不存在,请说明理由;
(3)设△CPQ的面积为y(cm2),求y与x的函数解析式,并探究x为何值时,△CPQ的面积取得最大值?并求出此最大值.

查看答案和解析>>

同步练习册答案