相关习题
 0  311754  311762  311768  311772  311778  311780  311784  311790  311792  311798  311804  311808  311810  311814  311820  311822  311828  311832  311834  311838  311840  311844  311846  311848  311849  311850  311852  311853  311854  311856  311858  311862  311864  311868  311870  311874  311880  311882  311888  311892  311894  311898  311904  311910  311912  311918  311922  311924  311930  311934  311940  311948  366461 

科目: 来源: 题型:解答题

6.如图,抛物线y=ax2+bx-4a经过A(-1,0)、C(0,4)两点,与x轴交于另一点B.
(1)求抛物线的解析式;
(2)已知点D(m,m+1)在第一象限的抛物线上,M为抛物线的顶点,试在直线BC上找一点N,使△MND的周长最小,求此时的N点坐标;
(3)在(2)的条件下,在抛物线是上找一点P,使△PBD中有一个角为45度,求点P的坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

5.如图,已知点A(1,0)、B(3,0)、C(0,1).
(1)若二次函数图象经过点A、C和点D(2,$-\frac{1}{3}$)三点,求这个二次函数的解析式.
(2)求∠ACB的正切值.
(3)若点E在线段BC上,且△ABE与△ABC相似,求出点E的坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

4.二次函数y=ax2+bx+c的图象与x轴交于A、B两点(点A在点B的左边),交y轴于点C,其图象顶点为D,已知点C的坐标为(0,3),点D的坐标为(2,-1).
(1)求此二次函数的解析式;
(2)试问△ABD与△BCO是否相似?并证明你的结论;
(3)已知P是此二次函数图象上的点,且∠PAB=∠ACB,试求点P的坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

3.如图,二次函数y=ax2+bx+c的图象交x轴于A(-1,0),B(2,0),交y轴于C(0,-2),过A,C画直线.
(1)求二次函数的解析式;
(2)若点P是抛物线上的动点,点Q是直线y=x上的动点,请判断是否存在以P、Q、O、C为顶点的四边形为平行四边形?若存在,请求出点Q的坐标;若不存在,请说明理由;
(3)在y轴右侧的点M在二次函数图象上,以M为圆心的圆与直线AC相切,切点为H.且△CHM∽△AOC(点C与点A对应),求点M的坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图1,在平面直角坐标系中,抛物线过原点O,点A(10,0)和点B(2,2),在线段OA上,点P从点O向点A运动,同时点Q从点A向点O运动,运动过程中保持AQ=2OP,当P、Q重合时同时停止运动,过点Q作x轴的垂线,交直线AB于点M,延长QM到点D,使MD=MQ,以QD为对角线作正方形QCDE(正方形QCDE随点Q运动).
(1)求这条抛物线的函数表达式;
(2)设正方形QCDE的面积为S,P点坐标(m,0),求S与m之间的函数关系式;
(3)过点P作x轴的垂线,交抛物线于点N,延长PN到点G,使NG=PN,以PG为对角线作正方形PFGH(正方形PFGH随点P运动),当点P运动到点(2,0)时,如图2,正方形PFGH的边GF和正方形QCDE的边EQ落在同一条直线上.
①则此时两个正方形中在直线AB下方的阴影部分面积的和是多少?
②若点P继续向点A运动,还存在两个正方形分别有边落在同一条直线上的情况,请直接写出每种情况下点P的坐标,不必说明理由.

查看答案和解析>>

科目: 来源: 题型:选择题

1.若a、b互为相反数,c、d互为倒数,m的绝对值是2,则a+b+c×d+2×|m|=(  )
A.3B.±4C.5D.5或-3

查看答案和解析>>

科目: 来源: 题型:解答题

20.如图抛物线y=-x2+bx+c与x轴的两个交点别为A(1,0),B(3,0)
(1)求这条抛物线所对应的函数关系式;
(2)设点P在该抛物线上滑动,若使△PAB的面积为1,这样的点P有几个?并求出满足P点的坐标;
(3)设抛物线交y轴于点C,在该抛物线对称轴上是否存在点M,使得△MAC的周长最小?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

19.定义:对于抛物线y=ax2+bx+c(a、b、c是常数,a≠0),若b2=ac,则称该抛物线为黄金抛物线.例如:y=x2-x+1是黄金抛物线
(1)请再写出一个与上例不同的黄金抛物线的解析式;
(2)将黄金抛物线y=x2-x+1沿对称轴向下平移3个单位
①直接写出平移后的新抛物线的解析式;
②新抛物线如图所示,与x轴交于A、B(A在B的左侧),与y轴交于C,点P是直线BC下方的抛物线上一动点,连结PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.
③当直线BC下方的抛物线上动点P运动到什么位置时,四边形 OBPC的面积最大并求出此时P点的坐标和四边形OBPC的最大面积.

查看答案和解析>>

科目: 来源: 题型:解答题

18.二次函数y=ax2+bx+c的图象的一部分如图所示.已知它的顶点M在第二象限,且经过点A(1,0)和点B(0,1)此二次函数的图象与x轴的另一个交点为C.
(Ⅰ)试求a,b所满足的关系式;
(Ⅱ)当△AMC的面积为△ABC面积的$\frac{5}{4}$倍时,求a的值;
(Ⅲ)是否存在实数a,使得△ABC为直角三角形?若存在,请求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知:如图,抛物线y=a(x-1)2+c与y轴交于点C(0,-4),与x轴交于点A、B,点A的坐标为(-2,0).
(1)求该抛物线的解析式;
(2)点P是线段AB上的动点,过点P作PD∥BC,交AC于点D,连接CP.当△CPD的面积最大时,求点P的坐标;
(3)若平行于y轴的动直线l与该抛物线交于点Q,与直线BC交于点F,点M的坐标为(2,0).问:是否存在这样的直线l,使得△OMF是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案