相关习题
 0  312059  312067  312073  312077  312083  312085  312089  312095  312097  312103  312109  312113  312115  312119  312125  312127  312133  312137  312139  312143  312145  312149  312151  312153  312154  312155  312157  312158  312159  312161  312163  312167  312169  312173  312175  312179  312185  312187  312193  312197  312199  312203  312209  312215  312217  312223  312227  312229  312235  312239  312245  312253  366461 

科目: 来源: 题型:解答题

9.如图,AE⊥AB,BC⊥CD,且AE=AB,BC=CD,F为DE的中点,M为AC中点,证明:FM⊥AC.

查看答案和解析>>

科目: 来源: 题型:填空题

8.已知相交两圆的半径分别为5cm和3cm,公共弦长为4cm,则两圆的圆心距为$\sqrt{21}$±$\sqrt{5}$cm.

查看答案和解析>>

科目: 来源: 题型:解答题

7.如图,在平面直角坐标系中完成下列各题:(不写作法,保留作图痕迹)
(1)在图一中作出△ABC关于y轴对称的△A1B1C1并写出A1、B1、C1的坐标.
(2)在图二中x轴上画出点P,使PA+PB的值最小.

查看答案和解析>>

科目: 来源: 题型:解答题

6.某商场将进价为2000元的冰箱以3000元售出,平均每天能售出8台,为配合国家“家电下乡”政策实施,商场决定在保证盈利的前提下采取适当的降价措施.调查表明:如果这种冰箱每台的降价不超过500元时.这种冰箱的售价每降低50元,平均每天就能多售出4台;如果这种冰箱每台的降价超过500元后,若再降价,每降低50元,平均每天就能多售出10台.设这种冰箱每台降价x元(x为50的整数倍),每天的销售量为y件.
(1)求y与x的函数关系式并直接写出自变量x的取值范围;
(2)设商场每天的销售利润为W元,请直按写出W与x的函数关系式;
(3)当这种冰箱每台的售价定为多少元时,每天可获得最大利润?最大利润是多少元?

查看答案和解析>>

科目: 来源: 题型:解答题

5.小明、小敏两人一起做数学作业,小敏把题读到如图(1)所示,CD⊥AB,BE⊥AC时,还没把题读完,就说:“这题一定是求证∠B=∠C,也太容易了.”她的证法是:由CD⊥AB,BE⊥AC,得∠ADC=∠AEB=90°,公共角∠DAC=∠BAE,所以△DAC≌△EAB.由全等三角形的对应角相等得∠B=∠C.
小明说:“小敏你错了,你未弄清本题的条件和结论,即使有CD⊥AB,BE⊥AC,公共角∠DAC=∠BAE,你的推理也是错误的.看我画的图(2),显然△DAC与△EAB是不全等的.再说本题不是要证明∠B=∠C,而是要证明BE=CD.”
(1)根据小敏所读的题,判断“∠B=∠C”对吗?她的推理对吗?若不对,请做出正确的推理.
(2)根据小明说的,要证明BE=CD,必然是小敏丢了题中条件,请你把小敏丢的条件找回来,并根据找出的条件,你做出判断BE=CD的正确推理.
(3)要判断三角形全等,从这个问题中你得到了什么启发?

查看答案和解析>>

科目: 来源: 题型:选择题

4.如图,一次函数y=kx-4的图象与反比例函数y=$\frac{n}{x}$的图象交于M、N两点,其中点M的坐标为(3,2),则k,n的值为(  )
A.2,2B.3,8C.2,6D.-2,-8

查看答案和解析>>

科目: 来源: 题型:选择题

3.如图,把△ABC绕点C顺时针旋转32°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A度数为(  )
A.48°B.58°C.68°D.78°

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图,AB是⊙O的直径,点A为$\widehat{CD}$的中点,点F是CG的中点,AF的延长线交⊙O于点E,点H是BG的中点,tanE=$\frac{1}{2}$.
(1)求证:△ACG≌△FHG;
(2)求证:2AE2=5AD2
(3)若AG=2,求⊙O的直径AB及△DEF的面积.

查看答案和解析>>

科目: 来源: 题型:解答题

1.针对儿童选秀类节目,部分专家学者指出,喧闹的儿童选秀节目排名对孩子健康成长不利,无论是排名靠前或靠后,商业化操作的选秀都可能对孩子童真造成不可挽回的伤害.针对这一现象,记者随机调查了某小学的若干名学生家长,从“赞成”“反对”“无所谓”“其他”四个方面对“儿童选秀”的现象进行了调查,将调查结果统计整理后,制成了如图所示的统计图,根据统计图信息,请回答下列问题:

(1)求本次共随机调查了多少名学生家长;
(2)求扇形统计图中,对参与“儿童选秀”持“赞成”态度的学生家长人数所占圆心角的度数,并补全条形统计图和扇形统计图;
(3)在调查过程中,记者发现有一部分学生家长认为在“儿童选秀”节目中,如果合理地引导孩子,不仅能丰富他们的业余生活,还能增长见识,该记者打算在有这种想法的家长中找出一名家长,作进一步地采访,其中甲、乙两名学生家长愿意交流想法,记者提议采取抽签的方式决定采访哪位家长:准备3张完全相同的分别标有数字1、2、3的卡片,卡片均数字朝下放置,洗匀后一个人任意从中摸出一张卡片,记下数字后放回,允许洗匀后由第二个人摸出一张卡片,若学生家长甲抽到的数字比学生家长乙大,则采访学生家长甲,否则采访学生家长乙.请你用列表法或画树状图的方法求学生家长甲被采访的概率.
(4)如果该小学的在校学生有5000人,估计该小学的学生家长(父母双方只选一方的意见)中,对小学生参与“儿童选秀”节目持“赞成”态度的人数.

查看答案和解析>>

科目: 来源: 题型:选择题

20.平面内点A(-2,2)和点B(-2,6)的对称轴是(  )
A.x轴B.y轴C.直线y=4D.直线x=-2

查看答案和解析>>

同步练习册答案