16.观察下列各式的化简过程(其中a>2):
①$\frac{a-2}{\sqrt{a-2}}$=$\frac{(\sqrt{a-2})^{2}}{\sqrt{a-2}}$=$\sqrt{a-2}$;
②$\frac{a-2}{\sqrt{a}-\sqrt{2}}$=$\frac{(\sqrt{a})^{2}-(\sqrt{2})^{2}}{\sqrt{a}-\sqrt{2}}$=$\frac{(\sqrt{a}+\sqrt{2})(\sqrt{a}-\sqrt{2})}{\sqrt{a}-\sqrt{2}}$=$\sqrt{a}$+$\sqrt{2}$;
③$\frac{a-4}{\sqrt{a}+2}$=$\frac{(\sqrt{a})^{2}-{2}^{2}}{\sqrt{a}+2}$=$\frac{(\sqrt{a}+2)(\sqrt{a}-2)}{\sqrt{a}+2}$=$\sqrt{a}$-2.
(1)上述各式化简过程的共同特点是:先将分子变形,通过约分.化去分母中的根号.
(2)试用上述方法化去下列各式分母中的根号.
①$\frac{2a+6}{\sqrt{a+3}}$; ②$\frac{a-1}{1+\sqrt{a}}$; ③$\frac{a-b}{\sqrt{a}-\sqrt{b}}$.
(3)你还有别的方法化去上列各式分母中的根号吗?