相关习题
 0  328885  328893  328899  328903  328909  328911  328915  328921  328923  328929  328935  328939  328941  328945  328951  328953  328959  328963  328965  328969  328971  328975  328977  328979  328980  328981  328983  328984  328985  328987  328989  328993  328995  328999  329001  329005  329011  329013  329019  329023  329025  329029  329035  329041  329043  329049  329053  329055  329061  329065  329071  329079  366461 

科目: 来源:山东省烟台市2018年中考数学试卷 题型:填空题

如图,反比例函数y=的图象经过?ABCD对角线的交点P,已知点A,C,D在坐标轴上,BD⊥DC,?ABCD的面积为6,则k=_____.

查看答案和解析>>

科目: 来源:山东省烟台市2018年中考数学试卷 题型:填空题

如图,方格纸上每个小正方形的边长均为1个单位长度,点O,A,B,C在格点(两条网格线的交点叫格点)上,以点O为原点建立直角坐标系,则过A,B,C三点的圆的圆心坐标为_____.

查看答案和解析>>

科目: 来源:山东省烟台市2018年中考数学试卷 题型:填空题

已知关于x的一元二次方程x2﹣4x+m﹣1=0的实数根x1,x2,满足3x1x2﹣x1﹣x2>2,则m的取值范围是_____.

查看答案和解析>>

科目: 来源:山东省烟台市2018年中考数学试卷 题型:填空题

如图,点O为正六边形ABCDEF的中心,点M为AF中点,以点O为圆心,以OM的长为半径画弧得到扇形MON,点N在BC上;以点E为圆心,以DE的长为半径画弧得到扇形DEF,把扇形MON的两条半径OM,ON重合,围成圆锥,将此圆锥的底面半径记为r1;将扇形DEF以同样方法围成的圆锥的底面半径记为r2,则r1:r2=_____.

查看答案和解析>>

科目: 来源:山东省烟台市2018年中考数学试卷 题型:解答题

先化简,再求值:(1+)÷,其中x满足x2﹣2x﹣5=0.

查看答案和解析>>

科目: 来源:山东省烟台市2018年中考数学试卷 题型:解答题

随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:

(1)这次活动共调查了   人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为   

(2)将条形统计图补充完整.观察此图,支付方式的“众数”是“   ”;

(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.

查看答案和解析>>

科目: 来源:山东省烟台市2018年中考数学试卷 题型:解答题

汽车超速行驶是交通安全的重大隐患,为了有效降低交通事故的发生,许多道路在事故易发路段设置了区间测速如图,学校附近有一条笔直的公路l,其间设有区间测速,所有车辆限速40千米/小时数学实践活动小组设计了如下活动:在l上确定A,B两点,并在AB路段进行区间测速.在l外取一点P,作PC⊥l,垂足为点C.测得PC=30米,∠APC=71°,∠BPC=35°.上午9时测得一汽车从点A到点B用时6秒,请你用所学的数学知识说明该车是否超速.(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)

查看答案和解析>>

科目: 来源:山东省烟台市2018年中考数学试卷 题型:解答题

为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.

(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?

(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?

查看答案和解析>>

科目: 来源:山东省烟台市2018年中考数学试卷 题型:解答题

如图,已知D,E分别为△ABC的边AB,BC上两点,点A,C,E在⊙D上,点B,D在⊙E上.F为上一点,连接FE并延长交AC的延长线于点N,交AB于点M.

(1)若∠EBD为α,请将∠CAD用含α的代数式表示;

(2)若EM=MB,请说明当∠CAD为多少度时,直线EF为⊙D的切线;

(3)在(2)的条件下,若AD=,求的值.

查看答案和解析>>

科目: 来源:山东省烟台市2018年中考数学试卷 题型:解答题

(问题解决)

一节数学课上,老师提出了这样一个问题:如图1,点P是正方形ABCD内一点,PA=1,PB=2,PC=3.你能求出∠APB的度数吗?

小明通过观察、分析、思考,形成了如下思路:

思路一:将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,求出∠APB的度数;

思路二:将△APB绕点B顺时针旋转90°,得到△CP'B,连接PP′,求出∠APB的度数.

请参考小明的思路,任选一种写出完整的解答过程.

(类比探究)

如图2,若点P是正方形ABCD外一点,PA=3,PB=1,PC=,求∠APB的度数.

查看答案和解析>>

同步练习册答案