相关习题
 0  329655  329663  329669  329673  329679  329681  329685  329691  329693  329699  329705  329709  329711  329715  329721  329723  329729  329733  329735  329739  329741  329745  329747  329749  329750  329751  329753  329754  329755  329757  329759  329763  329765  329769  329771  329775  329781  329783  329789  329793  329795  329799  329805  329811  329813  329819  329823  329825  329831  329835  329841  329849  366461 

科目: 来源:山东省青岛市2018届数学中考模拟试卷 题型:解答题

(题文)已知:线段a及∠ACB.

求作:⊙O,使⊙O在∠ACB的内部,CO=a,且⊙O与∠ACB的两边分别相切.

查看答案和解析>>

科目: 来源:山东省青岛市2018届数学中考模拟试卷 题型:解答题

计算                                

(1)化简:

(2)关于x的一元二次方程2x2+3x﹣m=0有两个不相等的实数根,求m的取值范围.

查看答案和解析>>

科目: 来源:山东省青岛市2018届数学中考模拟试卷 题型:解答题

(本小题满分6分)

小颖和小丽做“摸球”游戏:在一个不透明的袋子中装有编号为1~4的四个球(除编号外都相同),从中随机摸出一个球,记下数字后放回,再从中摸出一个球,记下数字。若两次数字之和大于5,则小颖胜,否则小丽胜。这个游戏对双方公平吗?请说明理由。

查看答案和解析>>

科目: 来源:山东省青岛市2018届数学中考模拟试卷 题型:解答题

小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B,C两点的俯角分别为45°,35°.已知大桥BC与地面在同一水平面上,其长度为100m,请求出热气球离地面的高度.(结果保留整数)(参考数据:sin35°≈ ,cos35°≈ ,tan35°≈

查看答案和解析>>

科目: 来源:山东省青岛市2018届数学中考模拟试卷 题型:解答题

甲、乙两名队员参加射击训练,成绩分别绘制成下列两个统计图:

 

根据以上信息,整理分析数据如下:

平均成绩(环)

中位数(环)

众数(环)

方差

a

7

7

1.2

7

b

8

c

(1)写出表格中a,b,c的值;

(2)分别运用表中的四个统计量,简要分析这两名队员的射击成绩,若选派其中一名参赛,你认为应选哪名队员?

查看答案和解析>>

科目: 来源:山东省青岛市2018届数学中考模拟试卷 题型:解答题

(本小题满分8分)某厂制作甲、乙两种环保包装盒。已知同样用6m的材料制成甲盒的个数比制成乙盒的个数少2个,且制成一个甲盒比制作一个乙盒需要多用20%的材料。

(1)求制作每个甲盒、乙盒各用多少材料?

(2)如果制作甲、乙两种包装盒3000个,且甲盒的数量不少于乙盒数量的2倍,那么请写出所需材料总长度与甲盒数量之间的函数关系式,并求出最少需要多少米材料。

查看答案和解析>>

科目: 来源:山东省青岛市2018届数学中考模拟试卷 题型:解答题

已知:如图,在?ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF分别交BA的延长线、DC的延长线于点G,H,交BD于点O.

(1)求证:△ABE≌△CDF;

(2)连接DG,若DG=BG,则四边形BEDF是什么特殊四边形?请说明理由.

查看答案和解析>>

科目: 来源:山东省青岛市2018届数学中考模拟试卷 题型:解答题

(12分)如图所示是隧道的截面由抛物线和长方形构成,长方形的长是12 m,宽是4 m.按照图中所示的直角坐标系,抛物线可以用y=x2+bx+c表示,且抛物线上的点C到OB的水平距离为3 m,到地面OA的距离为m.

(1)求抛物线的函数关系式,并计算出拱顶D到地面OA的距离;

(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向车道,那么这辆货车能否安全通过?

(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?

查看答案和解析>>

科目: 来源:山东省青岛市2018届数学中考模拟试卷 题型:解答题

(本小题满分10分)

问题提出:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?

问题探究:不妨假设能搭成种不同的等腰三角形,为探究之间的关系,我们可以从特殊入手,通过试验、观察、类比,最后归纳、猜测得出结论.

探究一:

用3根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?

此时,显然能搭成一种等腰三角形。所以,当时,

用4根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?

只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形

所以,当时,

用5根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?

若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形

若分为2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形

所以,当时,

用6根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?

若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形

若分为2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形

所以,当时,

综上所述,可得表①


 

3
 

4
 

5
 

6
 


 

1
 

0
 

1
 

1
 

探究二:

用7根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?

(仿照上述探究方法,写出解答过程,并把结果填在表②中)

分别用8根、9根、10根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?

(只需把结果填在表②中)


 

7
 

8
 

9
 

10
 


 


 


 


 


 

你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,……

解决问题:用根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?

(设分别等于,其中是整数,把结果填在表③中)


 


 


 


 


 


 


 


 


 


 

问题应用:用2016根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(要求写出解答过程)

其中面积最大的等腰三角形每个腰用了__________________根木棒。(只填结果)

查看答案和解析>>

科目: 来源:山东省青岛市2018届数学中考模拟试卷 题型:解答题

已知:如图,在矩形ABCD中,AB=6cm,BC=8cm,对角线AC,BD交于点0.点P从点A出发,沿方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC于点E,过点Q作QF∥AC,交BD于点F.设运动时间为t(s)(0<t<6),解答下列问题:

(1)当t为何值时,△AOP是等腰三角形?

(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式;

(3)在运动过程中,是否存在某一时刻t,使S五边形S五边形OECQF:S△ACD=9:16?若存在,求出t的值;若不存在,请说明理由;

(4)在运动过程中,是否存在某一时刻t,使OD平分∠COP?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案