科目: 来源: 题型:
【题目】如图,在平行四边形ABCD中,对角线AC,BD相交于点O,若E,F是AC上两动点,分别从A,C两点以相同的速度向C、A运动,其速度为1cm/s.
![]()
(1)当E与F不重合时,四边形DEBF是平行四边形吗?说明理由;
(2)若BD=12cm,AC=16cm,当运动时间t为何值时,以D、E、B、F为顶点的四边形是矩形?
查看答案和解析>>
科目: 来源: 题型:
【题目】某校九年级两个班各为玉树地震灾区捐款1800元.已知2班比1班人均捐款多4元,2班的人数比1班的人数少10%.请你根据上述信息,就这两个班级的“人数”或“人均捐款”提出一个用分式方程解决的问题,并写出解题过程.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知点A(3,2)和点E是正比例函数y=ax与反比例函数
的图象的两个交点.
![]()
(1)填空:点E坐标: ;不等式
的解集为 ;
(2)求正比例函数和反比例函数的关系式;
(3)P(m,n)是函数
图象上的一个动点,其中0<m<3.过点P作PB⊥y轴于点B,过点A作AC⊥x轴于点C,直线PB、AC交于点D.当P为线段BD的中点时,求△POA的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,直线y=
x+2与x轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c的对称轴是x=﹣
且经过A、C两点,与x轴的另一交点为点B.
![]()
(1)①直接写出点B的坐标;②求抛物线解析式.
(2)若点P为直线AC上方的抛物线上的一点,连接PA,PC.求△PAC的面积的最大值,并求出此时点P的坐标.
(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】长为30,宽为a的矩形纸片(15<a<30),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去.若在第n次操作后,剩下的矩形为正方形,则操作终止.当n=3时,a的值为 .
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】下列命题中,是真命题的是( )
A. 对角线互相平分且相等的四边形是正方形
B. 对角线互相平分的四边形是平行四边形
C. 对角线相等的四边形是矩形
D. 对角线互相垂直的四边形是菱形
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE.
![]()
(1)求证:直线DF与⊙O相切;
(2)若AE=7,BC=6,求AC的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在教学实践课中,小明为了测量学校旗杆CD的高度,在地面A处放置高度为1.5米的测角仪AB,测得旗杆顶端D的仰角为32°,AC=22米,求旗杆CD的高度.(结果精确到0.1米.参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】为解决江北学校学生上学过河难的问题,乡政府决定修建一座桥,建桥过程中需测量河的宽度(即两平行河岸AB与MN之间的距离).在测量时,选定河对岸MN上的点C处为桥的一端,在河岸点A处,测得∠CAB=30°,沿河岸AB前行30米后到达B处,在B处测得∠CBA=60°,请你根据以上测量数据求出河的宽度.(参考数据:
≈1.41,
≈1.73,结果保留整数)
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com